

Planning Approval Consistency Assessment Form

SM ES-FT-414

Sydney Metro Integrated Management System (IMS)

Assessment Name:	Temporary Transport Plan October 2022 school holidays
Prepared by:	Sydney Metro
Prepared for:	Sydney Metro
Assessment number:	TfNSW63
Type of assessment:	Assessment under EP&A Act 1979, Division 5.2
Version:	Final 1.0
Planning approval No. (where relevant):	SSI 8256
Date required:	23 September 2022
iCentral number	SM-22-00396064

Form information – do not alter

Form number	SM ES-FT-414
Applicable to:	Sydney Metro
Document Owner:	Associate Director, Planning Approvals
System Owner:	Executive Director, Environment, Sustainability & Planning
Status:	Final
Version:	3.0
Date of issue:	AUGUST 2022
Review date:	As required
© Sydney Metro 2022	

Table of Contents

3
6
9
9
9
9
10
10
10
11
21
23
23
24
25
27
28
2022 29
30

(Uncontrolled when printed)

1. Existing Approved Project

Planning approval reference details (Application/Document No. (including modifications)):

SSI 8256 Sydney Metro City & Southwest – Sydenham to Bankstown

SSI_8256 Sydney Metro City & Southwest - Sydenham to Bankstown Station: Modification 1 - October 2020

Date of determination:

Infrastructure Approval date – 12 December 2018 Modification 1 Approval date – 22 October 2020

Type of planning approval:

Critical State Significant Infrastructure

Relevant background information (including EA, REF, Submissions Report, Director General's Report, MCoA):

Sydenham to Bankstown Environmental Impact Statement (EIS) – September 2017

Sydenham to Bankstown Submissions and Preferred Infrastructure Report (SPIR) - June 2018

Sydenham to Bankstown Submissions Report (SR) - September 2018

Sydenham to Bankstown Modified Conditions of Approval – October 2020

Consistency Assessment Temporary Transport Plan July 2022 school holidays (TfNSW54 July 2022)

July 2022 Possessions Traffic Consistency Assessment (Appendix B) – June 2022

All proposed works identified in the assessment would be undertaken in accordance with the mitigation measures identified in the EIS, SPIR and SR and the conditions of approval.

Sydney Metro - Integrated Management System (IMS)

(Uncontrolled when printed)

Description of existing approved project you are assessing for consistency:

Approved project

The approved project includes construction and operation of a metro rail line, approximately 13km long, between west of Sydenham Station and west of Bankstown Station, including ten metro stations west of Sydenham (Marrickville to Bankstown inclusive) and associated ancillary infrastructure. The works include station works, track and rail system facility works and other works to support metro operations.

Description of approved project between Sydenham and Bankstown

Sydney Metro City and Southwest – Sydenham to Bankstown works includes the following:

Station works

In addition to the station upgrades to improve accessibility, works to meet the standards required for metro services include:

- Installation of platform screen doors
- Provision of operational facilities, such as station service buildings
- Accessibility upgrades for buildings
- Works related to integration with other modes of transport.

Track and rail system facility works

The upgrade of track and rail systems to enable operation of metro services include:

- · Track works where required along the rail corridor, including upgrading tracks and adjusting alignments, between west of
- Sydenham Station and west of Bankstown Station
- New turn back facilities and track crossovers
- Installing Sydney Metro rail systems and adjusting existing Sydney Trains rail systems
- Overhead wiring adjustments.

Other Project elements

- Upgrading existing bridges and underpasses
- Security measures, such as fencing
- Noise barriers
- Modifications to corridor access gates and tracks
- Augmentation of existing power supply, including new traction sub-stations

Sydney Metro - Integrated Management System (IMS)

(Uncontrolled when printed)

- Utility and rail system protection.
- Bridge protection works
- Combined Service Route
- Drainage works to reduce flooding and manage stormwater
- · Provision of temporary facilities to support construction, including construction compounds and work sites

Temporary Transport Plan (TTP) during possessions

The Sydney Metro City and Southwest station upgrades between Sydenham and Bankstown include various construction activities that require the temporary shutdown of part of the rail line. The Environmental Impact Statement (EIS) for the project was exhibited in August 2017. The EIS presented a Temporary Transport Strategy (TTS) which outlined the use of bus replacement services over track possession periods, including assessments when trains could not run on the T3 Bankstown Line during construction. The possession periods that were assessed included school holiday possession periods (two (2) weeks in July and six (6) weeks in December/January for five (5) years), four (4) additional weekend possessions per year (in addition to the standard Sydney Trains possessions) and a final possession of up to six (6) months.

The Temporary Transport Strategy is presented in Appendix G of the EIS which states that rail possessions during school holiday periods had only been proposed for the July and December-January school holidays. The possession schedule was planned to avoid the April school holidays when events such as the Easter Show are held, and the October school holidays when sporting finals are often held. However, the needs of each special event will be considered separately. In many cases, the standard TTP would be able to accommodate the increased customer demand, subject to increasing bus frequencies to peak hour levels if the event occurs during the evening or on a weekend. If customer demand levels are high enough, an adapted version of the TTP could be implemented where special services carry customers all the way to event destination.

Following exhibition of the EIS, changes were made to the exhibited project in the Submissions and Preferred Infrastructure Report (SPIR). Given the reduction in the construction activities required to deliver the scope of works identified in the SPIR, there was also a change to the proposed temporary transport arrangements. Key changes to these arrangements included:

- Changes to possession periods:
 - Additional eight (8) weekend possessions per year
 - Two (2) week possessions during December holiday periods only
 - Occasional weekday night-time possessions
- Concurrent closure of three (3) stations for up to two (2) months.

A Temporary Transport Plan (TTP) has been successfully delivered across holiday possession periods in 2019, 2020 and 2021, including a July school holiday period in 2021 and 2022.

2. Description of proposed change which is the subject of this assessment

This Consistency Assessment relates to the two-week possession period in September/October 2022 over the school holidays.

The SPIR assessed the two week possession for the December holiday periods only, with the planned possession schedule to avoid the October school holidays due to sporting finals. Due to industrial action preventing the work required over past possession periods to be adequately completed, the two week October shutdown is required to deliver the Sydney Metro project.

A comparison of the approved possessions and closures against the proposed is as follows:

Rail Possessions and Closures	Approved Rail Possessions and Station Closures (Section 2.7.2 and Section 2.7.3 of Appendix B of the SPIR)	Proposed Rail Possessions and Station Closures
Standard weekend possessions (Sydney Trains possessions utilised by Sydney Metro).	Up to four weekends each calendar year.	No change.
Additional weekend possessions.	Up to eight weekend possessions required each year.	No change.
School holiday possessions	Two week possessions of the T3 Bankstown line (either in part or full) during the Christmas school holiday periods.	Two week track possessions would be taken over school holiday periods, including outside Christmas school holiday periods. A two-week possession was undertaken during the July school holiday period (2-16 July 2022) and a two-week possession would be taken over the October 2022 school holiday period between the 24 September to 9 October.
Freight track possessions The section of rail corridor between east of Marrickville and west of Campsie is shared with freight tracks managed by ARTC.	Up to four weekend possessions a year (these periods coincide with the standard Sydney Trains possession described above).	No change.
Night-time weekday possessions	Required on an occasional basis to prepare the rail corridor ahead of weekend or school holiday possessions.	No change.
Final possession	Between three and six months once the stations have been upgraded.	No change.

Sydney Metro - Integrated Management System (IMS)

Temporary station closures	Individual stations may be closed for up to 2 months to complete the station works. Up to three stations may be closed at any one time.	The proposed activity avoids the need for 4 two-month station closures.
----------------------------	---	---

The additional full line closure would be required for two weeks in the October 2022 school holiday period (24 September – 9 October) to enable construction of the approved project. Stations between Sydenham and Birrong, along the T3 Bankstown Line, would be temporarily closed between 2am Saturday 24 September to 2am Monday 10 October 2022.

Between 24 September to 7 October 2022, the T3 Bankstown Line would be closed between Birrong and Sydenham, and between the 8 to 9 October stations would be closed between Birrong and Sydenham as well as Birrong to Cabramatta.

Sydenham Station would remain open during the rail line closure as an interchange station between trains and replacement bus services. Trains would continue to operate west of Birrong Station and along the City Circle line between the 24 September to 7 October 2022. Between 8 to 9 October stations between Birrong and Cabramatta would also be closed with Cabramatta Station remained open during this weekend.

During the NRL grand final day on Sunday 2 October 2022, extra bus services would be added to the standard weekend timetable.

Frequent bus services would replace trains between the closed stations during this period. Bus replacement services would be provided on five routes on weekdays and the weekends, with lower frequency of bus services on the weekend except for 2 October for the NRL grand final. For travel between Sydenham and Bankstown, the replacement bus routes would be:

- 10T3 All stops between Sydenham and Bankstown
- 33T3 Limited Stops: Sydenham to Belmore, then all stops to Bankstown
- 13T3 Limited stops: Sydenham to Canterbury, then Campsie

For travel between Bankstown and Lidcombe, the replacement bus routes would be:

- 8T3 All stops between Bankstown and Lidcombe
- 8AT3 Express: Bankstown then Lidcombe

On Saturday 8 and Sunday 9 October, buses would also replace trains between Bankstown and Cabramatta on the following replacement bus routes:

- 14T3 All stops between Bankstown and Cabramatta
- 15T3 Express: Bankstown and Cabramatta

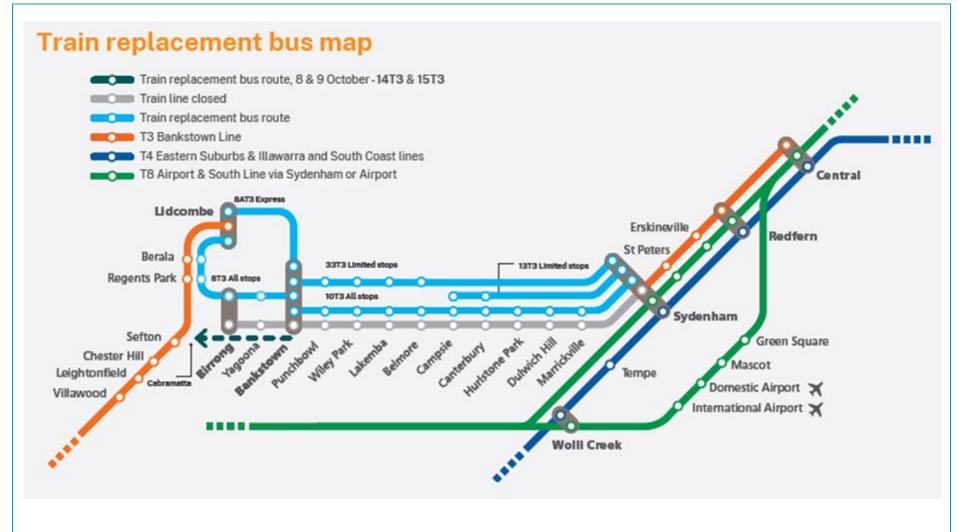


Figure 1 – Replacement and alternative services – Saturday 24 September to Sunday 9 October 2022 (Source: TfNSW)

(Uncontrolled when printed)

3. Timeframe

When will the proposed change take place? For how long?

For two weeks during the October school holidays from the end of September to early October 2022 (the proposed dates are 24 September – 9 October).

4. Site description

The temporary bus stops and routes are in the streets surrounding the Sydenham to Bankstown rail corridor, with focus on the streets between Bankstown and Sydenham, Campsie and Sydenham, and Lidcombe and Bankstown. See Appendix B for further details regarding the site.

5. Site Environmental Characteristics

Refer to the Environmental Impact Statement for a description of the existing environment. The proposed construction works would impact nearby receivers and the bus replacement services would impact on pedestrian spaces, parking spaces and Taxi Zones around affected train stations and existing road network only.

6. Justification for the proposed change

The Sydney Metro City & Southwest are upgrading all ten stations between Sydenham and Bankstown to meet current accessibility standards before converting the T3 Bankstown Line to Metro operations. The shutdown is needed to allow construction to take place on Sydney Metro.

A review of the construction scheduling identified a delay in the commencement of station construction due to the availability of possessions (rail shutdowns) and impacts of industrial action. This has implications on the date of station and milestone completion and therefore delivery of the wider Approved Project. The proposed additional possession is required to mitigate construction delays.

As a result of the proposed works (and other temporary transport arrangements as part of the existing planning approval), there is no longer a need for up to four two-month station closures where up to three stations would be closed at one time. This is an improved overall customer outcome.

Due to Sydney Trains industrial action, the full July 2022 TTP two week shutdown that was assessed could not be completed, with only one week of possession being completed. The October shutdown was added to the possession regime to provide additional time for the work that requires rail line possession to be fully completed.

Sydney Metro – Integrated Management System (IMS)

(Uncontrolled when printed)

7. Environmental Benefit								
The additional two-week possession would assist in mitigating overall project construction delays, reducing the total period of time where community and environmental impacts are occuring from construction works. The inclusion of the additional two-week school holiday possession periods, removes the need for up to four (4) two-month station closures, which is also an improved overall customer outcome by reducing total disruption.								
8. Control Measures								
Will a project and site angelie EMD be propored?	☐ Yes		Are appropriate control measures already identified in an existing	☐ Yes				
Will a project and site specific EMP be prepared?	⊠ No		EMP?	⊠ No				
9. Conditions of approval								
Will the proposal be consistent with the conditions	✓ Yes							
Will the proposal be consistent with the conditions of approval?								

OFFICIAL

10. Impact Assessment – Construction

Aspect	Nature and extent of impacts (negative and positive) during construction (if control measures implemented) of the proposed change, relative to the relevant impact in the Approved Project	Proposed Control Measures in addition to project CoA and REMMs	Minimal Impact Y/N	Endorsed	
				Y/N	Comments
Flora and fauna	No change from Approved Project.	No additional measures required.	Υ	Υ	
Water	No change from Approved Project.	No additional measures required.	Υ	Υ	
Soils and contamination	No change from Approved Project.	No additional measures required.	Υ	Υ	
Air quality	The proposed temporary bus routes have the potential for localised air quality impacts however, this is anticipated to be balanced by the line-wide shutdown of the rail corridor during this period. Nevertheless, any localised air quality impacts are considered to be negligible relative to the Approved Project.	No additional measures required.	Y	Y	

Sydney Metro – Integrated Management System (IMS)

	Nature and extent of impacts (negative and positive) during construction (if control measures implemented) of the proposed change, relative to the relevant impact in the Approved Project	Proposed Control Measures in addition to project CoA and REMMs	Minimal Impact Y/N	Endorsed	
Aspect				Y/N	Comments
Noise and vibration	The additional possession period and replacement bus services would result in minor noise impacts to nearby properties. The extent of construction noise and vibration impacts are expected to be similar to other possession periods assessed in the Approved Project. Construction noise and vibration was assessed in Volume 3, Technical Paper 2 of the EIS. These impacts would be mitigated in accordance with the measures contained within the Construction Noise and Vibration Management Plan and associated Construction Noise and Vibration Impact Statements. The impacts would be consistent with the noise impacts as assessed within the EIS and would be temporary in nature over the two week period. It is considered that the additional noise impacts from the bus routes present a negligible change from the Approved Project.	No additional measures required.	Y	Y	
Aboriginal heritage	No change from Approved Project.	No additional measures required.	Υ	Υ	
Non-Aboriginal heritage	No change from Approved Project.	No additional measures required.	Υ	Y	

Sydney Metro - Integrated Management System (IMS)

The proposed activity would result in community impacts, by way of inconveniences and delays, as the train line would not be in operation for two weeks. However, there has been a significant attempt to mitigate these impacts by providing five bus replacement routes between 24 September to 7 October and providing two replacement bus routes between 8 to 9 October, including express services. limited stop services and also routes to all train lines which is anticipated to provide a more direct connection to Central Station than an all stops rail replacement service to cater for everyone's requirements. Increased bus frequencies would be provided to provide access to the stadium for the NRL grand final day (2) October).

Community and socioeconomic

The additional school holiday possession periods removes social impacts which would have resulted from four two-month stations closures. An additional mitigation measure is proposed requiring consultation with the local community prior to the October possession.

There is potential for the proposed activity to result in economic impacts to businesses surrounding rail stations due to loss of rail patronage and some nearby car parking. However, the loss of rail patronage is temporary only and anticipated to be mitigated by additional patronage from construction workers and bus users. The car parking impacts are likely to be similar to other rail shutdowns being undertaken, for example over the Christmas or July possession. Any economic impact from the proposed activity is anticipated to be negligible relative to the Approved Project.

Consultation with the local community is to be undertaken prior to the two-week October possession and the community is continuously updated in the lead-up to the shutdown via email.

A 24/7 phone number is available to answer any questions and a project web page was created to provide more information. See Appendix D for further community consultation.

Bus marshals would be available during the busiest parts of the day and to cover the additional passenger demand caused by the NRL grand final, to assist customers with accessibility needs.

.

Υ

Υ

OFFICIAL

Aspect	Nature and extent of impacts (negative and positive) during construction (if control measures implemented) of the proposed change, relative to the relevant impact in the Approved Project	Proposed Control Measures in addition to project CoA and REMMs	Minimal Impact Y/N		Endorsed	
				Y/N	Comments	
Traffic and transport	Traffic In accordance with Condition of Approval E48, a Temporary Transport Management Plan has been prepared and sent to DPE. To support this Consistency Assessment, a memo was prepared (Appendix A) that concludes that due to lower service levels in TTP buses during the September/October possession period and the expected similar traffic volume patterns to those assessed for the July school holiday possession, additional traffic assessment is not required. Lower service levels are proposed as there were substantially additional services provided during the July rail possession than was required to meet the demand. Therefore, it is expected that key intersections would perform at or better than during the July possession period. Therefore, the construction impact assessment is expected to be similar to the outcomes of the July TTP Transport Consistency Assessment (Appendix B). Construction haulage traffic is consistent with the EIS. Majority of the intersections along two TTP routes between Lidcombe and Bankstown (08T3 and 08AT3) have been excluded from the sensitivity assessments/modelling as the bus frequencies are very low and the network is identified to have sufficient spare capacity to accommodate the small increase in TTP buses during the peak periods. The traffic impact of these routes is considered negligible.	Where there are more significant delays and oversaturated conditions and/or impacts to the intersection performance as a result of addition of TTP buses, recommended signal phasing/timing changes shall be considered in accordance with the revised environmental mitigation measure TC6. These intersections include: Sydenham Road / Victoria Road (AM peak) Hume Highway/ Chapel Road/ Rookwood Road (PM peak) Canterbury Road/ Kingsgrove Road / Sharp Street (AM peak)	Y	Y		

(Uncontrolled when printed)

	Nature and extent of impacts (negative	Proposed Control Measures in	Minimal	Endorsed	
Aspect	and positive) during construction (if control measures implemented) of the proposed change, relative to the relevant impact in the Approved Project	addition to project CoA and REMMs	Impact Y/N	Y/N	Comments
	Three intersections have multiple routes passing through, which results in a combined high frequency of TTP services during the peak hours. The impacts on key intersections are considered acceptable, subject to implementation of mitigation measures, and the assessment in the Transport Consistency Assessment (Appendix B) are summarised as follows: • Marrickville Road/ Wardell Road – AM peak hour volumes are less than 15 and therefore have negligible impacts. The PM peak hour would accommodate 50 replacement services and is likely to result in satisfactory intersection operations. • Marrickville Road/ Victoria Road – the addition of replacement services in the AM and PM peak hour is likely to have satisfactory operations. • Sydenham Road/ Illawara Road – During PM peak, the volumes are less than 15 buses. Therefore, the addition of TTP buses to this intersection is likely to have negligible impacts. • Marrickville Road/ Illawara Road - In the PM peak hour, the intersection is likely to accommodate 96 bus replacement services. This is based on the previous SPIR assessment. The addition of replacement services in the AM and PM				

		Proposed Control Measures in	Minimal Impact Y/N		Endorsed
Aspect		addition to project CoA and REMMs		Y/N	Comments
	 peak hour is likely to have acceptable operations. New Canterbury Road / Constitution Road – In the PM peak hour, the intersection is likely to accommodate 65 bus replacement services. This addition of replacement services in the AM and PM peak hour is likely to have acceptable operations. Wardell Road / Ewart Street - The addition of replacement services in the AM and PM peak hour is likely to have acceptable operations. The Boulevarde / Arthur Street – Though the TTP bus volumes have increased (by about 15 buses per hour), the impact of these additional buses on the intersection is expected to be similar or lower compared with the SPIR assessments. Therefore, the intersection would operate better compared to the SPIR forecasts for both AM and PM peak hours. Sydenham Road / Park Road / Petersham Road – This is a minor intersection with TTP buses going straight through the intersection. Therefore, the potential impacts due to TTP buses are expected to be minimal. Canterbury Road / Minter Street – This is a minor intersection with TTP buses going straight through the intersection. Therefore, the potential impacts due to TTP buses are expected to be minimal. 				

		Proposed Control Measures in			Endorsed
Aspect		addition to project CoA and REMMs	Minimal Impact Y/N	Y/N	Comments
	 Railway Parade/ Gleeson Avenue – The bus volumes during the AM peak hour are 17 buses and therefore likely to have negligible impacts in the AM peak hour. In the PM peak hour, the intersection is likely to have capacity to accommodate 84 replacement services. This is based on the SPIR assessment. Thus, the addition of 84 replacement services in the PM peak hour is likely to result in satisfactory intersection operations. Beamish Street / South Parade / Lilian Lane - The addition of 51 replacement services in the AM peak hour and 68 replacement services in the PM peak hour is likely to result in satisfactory intersection operations. Canterbury Road / Duke Street - This is a minor intersection with TTP buses going straight through the intersection. Therefore, the potential impacts due to TTP buses are expected to be minimal. Beamish Street / Clissold Parade – The intersection is likely to have capacity to accommodate 47 bus replacement services. In the PM peak hour, the intersection is likely to accommodate 46 bus replacement services. AM peak hour would operate LOS A and PM peak hour would operate at LOS E. Sydenham Road / Centennial Street – This is a minor intersection with TTP buses going straight through the 				

		Proposed Control Measures in	Minimal Impact Y/N	Endorsed		
Aspect		addition to project CoA and REMMs		Y/N	Comments	
	intersection. Therefore, the potential impacts due to TTP buses are expected to be minimal.					
	Majority of the signalised intersections have only slight increases in delays (less than 20 seconds) and the overall intersection performance is maintained as a result of the additional construction traffic and TTP buses during the October 2022 possession period. As the impact on the public would be minimal at this level of delay and the possession is for a short period (2 weeks) during the October 2022 school holiday period, it would not warrant specific mitigations.					
	Parking The temporary bus stops and provision for bus layover and standby buses would temporarily impact street parking and Taxi Zones during the two-week possession period. Impacts to street parking have been minimised as much as possible by strategic location of the bus stops and where possible, limiting impacts only during weekday peak periods.					
	During the possession, street parking would also be impacted by construction vehicle parking, and also the loss of some commuter car parking areas for use for material, equipment and machinery lay down areas.					
	Street parking impacts are expected to be greatest in streets adjacent to stations, access areas to the					

		Proposed Control Measures in addition to project CoA and REMMs	Minimal Impact Y/N	Endorsed		
Aspect				Y/N	Comments	
	rail corridor and commuter parking areas. This is due to proposed Bus Zones impacting parking spaces and the relocation of Taxi Zones impacting parking spaces.					
	Temporary kerbside changes have been managed in the Community Consultation Reports with the affected LGAs. Most changes were consistent with the previous TTP in December 2021 with no reported issues whilst other changes would be managed, such as with additional signage placed well in advance to provide clear information.					
	Commuter parking demand around the stations is expected to drop significantly during the possession period which would assist with offsetting parking impacts from construction worker vehicles and material, equipment and machinery laydown areas.					
	Impact to street parking during possession periods was assessed in Volume 2, Technical Paper 1 of the EIS, and the proposed activity is considered to be consistent with the Approved Project. The Conditions of Approval require a Temporary Transport Management Plan to be prepared and this would incorporate measures to minimise impact to on-street parking and surrounding residences and commercial properties. In addition to this, a mitigation measure is proposed, requiring consultation to be undertaken with businesses impacted by temporary bus stops and loss of car parking.					

Sydney Metro – Integrated Management System (IMS)

	Nature and extent of impacts (negative	Proposed Control Measures in	Minimal Impact Y/N	Endorsed	
Aspect	and positive) during construction (if control measures implemented) of the proposed change, relative to the relevant impact in the Approved Project	addition to project CoA and REMMs		Y/N	Comments
Waste and resource management	No change from Approved Project.	No additional measures required.	Y	Y	
Visual	Minor visual impacts would result from the temporary bus stops. However, this is considered to be temporary only and negligible relative to the Approved Project.	No additional measures required.	Y	Υ	
Land use and property	No change from Approved Project.	No additional measures required.	Y	Υ	
Hazard and risk	No change from Approved Project.	No additional measures required.	Y	Υ	
Other	No change from Approved Project.	No additional measures required.	Y	Y	

11. Impact Assessment – Operation

The proposed works are during construction only.

	Nature and extent of impacts (negative	Proposed Control Measures in	Minimal	Endorsed	
Aspect	and positive) during operation (if control measures implemented) of the proposed change, relative to the relevant impact in the Approved Project	addition to project COA and REMMs	Minimal Impact Y/N	Y/N	Comments
Flora and fauna	No change from Approved Project.	No additional measures required.	N/A	Y	
Water	No change from Approved Project.	No additional measures required.	N/A	Υ	
Soils and contamination	No change from Approved Project.	No additional measures required.	N/A	Υ	
Air quality	No change from Approved Project.	No additional measures required.	N/A	Υ	
Noise and vibration	No change from Approved Project.	No additional measures required.	N/A	Υ	
Aboriginal heritage	No change from Approved Project.	No additional measures required.	N/A	Υ	
Non-Aboriginal heritage	No change from Approved Project.	No additional measures required.	N/A	Υ	
Community and socio- economic	No change from Approved Project.	No additional measures required.	N/A	Y	
Traffic and transport	No change from Approved Project.	No additional measures required.	N/A	Y	
Waste and resource management	No change from Approved Project.	No additional measures required.	N/A	Υ	
Visual and urban design	No change from Approved Project.	No additional measures required.	N/A	Υ	

Sydney Metro – Integrated Management System (IMS)

(Uncontrolled when printed)

	Nature and extent of impacts (negative	Proposed Control Measures in	Minimal	Endorsed	
Aspect	and positive) during operation (if control measures implemented) of the proposed change, relative to the relevant impact in the Approved Project	addition to project COA and REMMs	Minimal Impact Y/N	Y/N	Comments
Land use and property	No change from Approved Project.	No additional measures required.	N/A	Υ	
Hazard and risk	No change from Approved Project.	No additional measures required.	N/A	Υ	
Other	No change from Approved Project.	No additional measures required.	N/A	Y	

12. Consistency with the Approved Project

Question	Consider the following:
Is the project (including the proposed changes) consistent with the conditions of approval?	Yes. The proposed works would be consistent with the conditions of approval.
Is the project (including the proposed changes) consistent with the objectives and functions of elements of the Approved Project?	Yes. The changes identified in this assessment are consistent with the objectives and functions of the elements of the Approved Project.
Are the environmental impacts of the proposed change consistent with the impacts of the approved project?	Yes. The proposed works do not result in any new environmental impacts beyond those considered in the Approved Project.
Is the change within the envelope of what has been approved?	Yes. The changes identified in this assessment are consistent with the objectives and functions of the Approved Project and the environmental impacts been adequately assessed.
Are there any new environmental impacts as a result of the proposed works/project changes?	All risks would be adequately addressed through the application of the mitigation measures in the above impact assessment tables. There would be no new environmental risks as a result of the proposed works.
Are the impacts of the proposed activity/works known and understood?	Yes. The impacts of the proposed works are understood and will be accounted for by implementing the control measures within this document, and relevant plans (October 2022 School Holidays TTMP).
Are the impacts of the proposed activity/works able to be managed so as not to have an adverse impact?	Yes. The impacts of the proposed works can be managed so as to avoid an adverse impact.
Is the proposed change/s consistent with the approval (having regard to the above assessment)?	✓ Yes□ No

13. Other Environmental Approvals

Identify all other approvals required for the proposed works:

OFFICIAL

(Uncontrolled when printed)

14. Recommendation

Based on the above impact assessment, and with reference to the Sydney Metro Sydenham to Bankstown EIS, SPIR, SR, and including the conditions of approval, it is recommended that:

	Tick relevant box
The proposed change has negligible or more than negligible impacts on the environment or community however is consistent with the Approval, including the conditions of approval. The proposed impacts are consistent with those assessed for the Approved Project (i.e., does not trigger a change to the conditions of approval).	\boxtimes
The proposed change is not consistent with the Approved Project including the conditions of approval and would be subject to a separate modification application.	
The proposed change is not substantially the same as the Approved Project and is considered a radical transformation. A new planning pathway should be considered.	

Author certification

I certify that to the best of my knowledge this Consistency Checklist:

- Examines and takes into account the fullest extent possible all matters affecting or likely to affect the environment as a result of activities associated with the proposed change; and
- Examines the consistency of the proposed change with the Approved Project; is accurate in all material respects and does not omit any material information.

Name:	Isabella Caruso	Signature:	Isabella Caruso
Title:	Planning Officer	Signature.	Tage in Cal man
Company:	Sydney Metro	Date:	06/09/2022

Assessment Supporting Signature

Application supported and submitted by						
Name:	Yvette Buchli	Date:	07/09/2022			
Title:	Associate Director Planning Approvals	Commonto				
Signature:	GvetteBuchli	Comments:				

(Uncontrolled when printed)

Assessment Endorsement

	pove assessment, are the impacts and scope of the proposed change consistent with roved Project?
Yes assessme	The proposed change is consistent with the Approved Project and no further equired.
No	The proposed change is not consistent with the Approved Project.
	or a new activity approval/ consent is required. Advise Senior Project Manager of rnative planning approvals pathway to be undertaken.

Endorsed b	Endorsed by							
Name:	Fil Cerone	Date:	7 September 2022					
Title:	Director City & Southwest, Environment, Sustainability and Planning	Comments:						
Signature:	Â,							

Appendix A – Memo – October TTP – Traffic Consistency Assessment

Memo

То	Isabella Caruso - Planning Officer, Planning Approvals
From	Jay Shanmugam – Transport Planning Analyst, Customer Journey Planning Nita Hutapea - Manager Network Modelling Advisory – Sydney Metro
Date	15 August 2022
Priority	ROUTINE
-	

Due date

The Sydney Metro City & Southwest will upgrade all 10 stations between Sydenham and Bankstown to meet current accessibility standards before converting the T3 Bankstown Line to Metro operations. This upgrade will include various construction activities that require the temporary closure of part or all of the rail line. The recent closure of T3 Bankstown train line occurred between Saturday 2 July and Friday 15 July 2022 (July TTP) due to Sydney Metro upgrade works. A Temporary Transport Plan (TTP) has been successfully delivered during the train line closure where five temporary bus routes were in operation. As part of the EIS requirements, a traffic consistency assessment has been carried out at all traffic-controlled intersections where the TTP buses in operation.

There is an upcoming train line closure along T3 Bankstown line between Saturday 24 September 2022 and Sunday 09 October 2022. This closure will also include the NRL grand final day on 02 October 2022. The short-term temporary planning team is currently planning the TTP bus operations for the upcoming closure. As part of the TTP planning, the bus timetables were reviewed and refined based on the following factors:

- Re-forecasted patronage demand: A reduction of 27 percentage to the 2019 patronage demand profiles. Factors may include recoveries from COVID travel patterns and work from home. Source: (http://forecast.aai.transport.nsw.gov.au)
- No restrictions to bus capacity due to COVID: As of 30 April 2022, TfNSW has removed all
 restrictions on the capacity of public transport modes. As such, it is assumed that all bus
 services may carry up to 54 passengers per bus.

 July 2022 TTP supply vs demand data: A comparison between the supply and the demand of the July 2022 TTP showed that there were additional services during the AM and PM peak periods.

The revised timetables for the upcoming September/October TTP had 22% fewer services in the AM peak and 19% fewer services in the PM peak. A comparison between the service levels are outlined in the table below:

			July 2022 TTP				September/October - 2022 TTP			
			Frequencies (services/hr)				Frequencies (services/hr)			
			AM	PM	IP	Weekend	AM	PM	IP	Weekend
Route	Direction	Towards	0800-0080	1700 - 1800	1100-1200	1200-0100	0060-0080	1700 - 1800	1100-1200	1200-0100
10T3	Inbound	Sydenham	38	12	12	8	25	10	9	10
10T3	Outbound	Bankstown	9	34	8	8	7	24	7	9
13T3	Inbound	Sydenham	25	5	7	8	21	6	7	7
13T3	Outbound	Campsie	4	22	4	8	6	18	6	5
33T3	Inbound	Sydenham	32	10	10	8	21	9	8	8
33T3	Outbound	Bankstown	4	28	6	8	6	20	5	7
8AT3	Inbound	Bankstown	6	8	4	4	5	7	4	4
8AT3	Outbound	Lidcombe	6	8	4	4	5	6	4	4
8T3	Inbound	Bankstown	8	12	4	4	8	11	4	4
8T3	Outbound	Lidcombe	10	10	4	4	7	9	4	4
TOTAL			142	149	63	64	111	120	58	62
% Difference over Oct TTP			22%	19%	8%	3%				

A review of SCATS traffic volume data for July 2019 and October 2019 school holiday periods has been undertaken to compare the traffic volumes at key intersections along the TTP bus routes. The analysis revealed that the October 2019 traffic volume is lower/ higher between -1% to +4% compared to July 2019 traffic volume. It is considered that the additional 4% traffic would not have significant impacts to the road network.

Recommendations

It is considered that due to lower service levels in TTP buses during the September/October TTP and the similar traffic volume patterns a subsequent traffic consistency assessment is not required. It is expected that key intersections will perform at or better than during the July TTP.

Appendix B – July 2022 Possessions Traffic Consistency Assessment

Prepared for Sydney Metro ABN: 12 354 063 515

July 2022 Possessions Traffic Consistency Assessment

15-Jun-2022

Sydney Metro City & Southwest Sydenham to Bankstown Upgrade

July 2022 Possessions Traffic Consistency Assessment

Client: Sydney Metro

ABN: 12 354 063 515

Prepared by

AECOM Australia Pty Ltd
Level 21, 420 George Street, Sydney NSW 2000, PO Box Q410, QVB Post Office NSW 1230, Australia T +61 2 8008 1700 www.aecom.com
ABN 20 093 846 925

In association with GHD

15-Jun-2022

Job No.: 60489141

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 and ISO45001.

 $\hfill \odot$ AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document July 2022 Possessions Traffic Consistency Assessment

Ref 60489141

Date 15-Jun-2022

Prepared by Mark Yeung / Nirman Kesari

Reviewed by Anoop Sridhar / Andrew Cook

Revision History

Rev	Revision Date	Details	Authorised			
I KCV	Nevision Date	Details	Name/Position	Signature		
Α	03-June-2022	First draft for Sydney Metro review	Kim Skellern AECOM specialist			
		TOVIOW	manager			
В	10-Jun-2022	Final	Kim Skellern AECOM specialist manager			
С	15-Jun-2022	Revised Final	Kim Skellern AECOM specialist manager	King		

Table of Contents

1.0	Introduct	ion 1	1-1				
	1.1	Background 1	1-1				
			1-1				
		,	1-1				
		1 (,	1-2				
		, , ,	. – 1-2				
	1.2		. <u>-</u> 1-3				
2.0	Methodo	·	2-4				
2.0	2.1		2-4 2-4				
	۷.۱		2-4 2-4				
		·	2- 4 2-5				
	2.2	·	2-5 2-5				
	2.2	0,					
			2-7				
		5 , 5	2-8				
		0 ,	2-9				
		· · · · · · · · · · · · · · · · · · ·	13				
	0.0	,	15 16				
	2.3						
	2.4		16				
		·	16				
		· · · · · · · · · · · · · · · · · · ·	18				
	2.5		19				
	2.6	Construction haulage traffic					
	2.7	Bridge works 2					
	2.8	Assumptions 2					
	2.9	,	21				
3.0			22				
	3.1	Assessment scenarios					
	3.2	•	22				
		,	23				
		3.2.2 TCS 81 – Livingstone Road / Sydenham Road / Frazer Street					
			25				
	3.3		26				
			27				
		3.3.2 TCS 1153 – Marrickville Road / Petersham Road [Category 1] 3-	28				
		3.3.3 TCS 569 – Illawarra Road / Petersham Road [Category 4] 3-	29				
		3.3.4 TCS 1315 – Illawarra Road / Warren Road [Category 4] 3-	30				
	3.4		32				
		3.4.1 TCS 42 – Wardell Road / Frazer Street [Category 1] 3-	33				
			34				
		3.4.3 TCS 86 – New Canterbury Road / Marrickville Road / Dulwich Street					
		[Category 2] 3-	35				
	3.5	Hurlstone Park Station 3-	37				
		3.5.1 TCS 78 – New Canterbury Road / Canterbury Road [Category 2] 3-3	38				
		, , , , , , , , , , , , , , , , , , , ,	39				
		3.5.3 TCS 777 – Canterbury Road / Queen Street / Crinan Street [Category					
			40				
	3.6	•	42				
		·	43				
		,	44				
		, , , , , , , , , , , , , , , , , , , ,	46				
	3.7	, , , , , , , , , , , , , , , , , , , ,	47				
		· · · · · · · · · · · · · · · · · · ·					

		3.7.1	ICS 507 – Canterbury Road / Charlotte Street / Thorncraft Parade	
			[Category 1]	3-48
		3.7.2	TCS 1363 – Fifth Avenue / Ninth Avenue [Category 1]	3-49
		3.7.3	TCS 79 - Canterbury Road / Beamish Street / Bexley Road [Categorial Control of the Control of th	ory
			2]	3-50
		3.7.4	TCS 2816 – Beamish Street / Amy Street [Category 2]	3-51
		3.7.5	TCS 738 – Beamish Street / Evaline Street [Category 4]	3-52
		3.7.6	TCS 996 – Beamish Street / Ninth Avenue [Category 4]	3-53
	3.8	Belmore	Station	3-55
		3.8.1	TCS 162 – Canterbury Road / Burwood Road [Category 2]	3-56
		3.8.2	TCS 1329 – Burwood Road / Leylands Parade [Category 2]	3-57
		3.8.3	TCS 80 - Canterbury Road / Kingsgrove Road / Sharp Street [Cate	gory
			4]	3-58
		3.8.4	TCS 157 – Burwood Road / Lakemba Street [Category 4]	3-60
	3.9	Lakemba	a, Wiley Park and Punchbowl Stations	3-61
		3.9.1	TCS 382 – King Georges Road / The Boulevarde [Category 2]	3-62
		3.9.2	TCS 1299 – Haldon Street / The Boulevarde [Category 2]	3-63
		3.9.3	TCS 1744 – Punchbowl Road / The Boulevarde / South Terrace	
			[Category 2]	3-64
	3.10	Banksto	wn Station	3-67
		3.10.1	TCS 1203 – Chapel Road / Rickard Road [Category 1]	3-68
		3.10.2	TCS 4408 – Chapel Road / French Avenue [Category 1]	3-69
		3.10.3	TCS 1817 – Restwell Street / South Terrace [Category 2]	3-70
		3.10.4	TCS 4074 – Restwell Street / Raymond Street / Greenfield Parade	
			[Category 2]	3-71
	3.11	Yagoona	a and Berala Stations	3-72
		3.11.1	TCS 61 - Hume Highway / Chapel Road / Rookwood Road [Catego	ory
			1]	3-73
		3.11.2	TCS 2789 – Joseph Street / Georges Avenue [Category 1]	3-75
4.0	Mitigation	n measur	es	4-76
	4.1		environmental mitigation measures	4-76
	4.2	Recomm	nendations for this assessment	4-84
5.0	Summar	y and cor		5-85
٨ م ا	٠. ٨	•		
Appendi		D 4	Datallad Mana	^
	I I P Bus	Routes -	Detailed Maps	Α
Appendi	х В			
• •		ary Sensit	tivity Analysis	В
A !'		,		
Appendi		: A	and and Maliana an	_
	intersect	ion Asses	ssment Volumes	С
Appendi	x D			
		ion Move	ment Summaries	D

1.0 Introduction

1.1 Background

Sydney Metro has received approval for the Sydenham to Bankstown upgrade component of the Sydney Metro City & Southwest (the project) in December 2018. The project involves upgrading 10 existing stations west of Sydenham (Marrickville to Bankstown inclusive), and a 13-kilometre-long section of the Sydney Trains T3 Bankstown Line, between west of Sydenham Station and east of Bankstown Station, to improve accessibility for customers and meet the standards required for metro operations. The project would enable Sydney Metro to operate beyond Sydenham, to Bankstown.

1.1.1 Environmental Impact Statement (EIS)

An Environmental Impact Statement (EIS) for the project was exhibited in August 2017 (the exhibited project). The EIS included a Temporary Transport Strategy (TTS) which outlined the use of bus replacement services over track possession periods, periods when trains could not run on the T3 Bankstown Line, during construction.

This assessment analysed the potential impacts of the project during the required possession periods. The possession periods that were assessed included school holiday possession periods:

- Two weeks in July and six weeks in December/January for five years
- Four additional weekend possessions per year in addition to the standard Sydney Trains possessions

Typical weekday demand on the T3 Bankstown Line was assumed in the assessment to be in the order of 90,000 trips per day, of which the vast majority were between Sydenham and Bankstown Stations. A 6% per annum growth in demand was projected for the T3 Bankstown Line. To meet this demand, a Baseline Temporary Transport Plan (TTP) and a Refined TTP was developed which provided a potential network and frequencies of replacement bus services.

A Baseline Temporary Transport Plan included replacement buses during possession periods that provide a full rail capacity replacement by buses only, as currently occurs during typical weekend possession. This Baseline Temporary Transport Plan was assessed in the EIS and indicated that there would be extensive impacts with both intersection capacities and the ability to provide safe and efficient boarding and alighting facilities at stations being affected. As this scenario would have the potential to adversely affect not just the amenity for passengers using the rail replacement service, but those on existing bus routes in the area, private car users and cyclists, a Refined Baseline TTP scenario was also developed as part of the EIS. The Refined Baseline TTP was tested to assess an alternative rail replacement strategy to convey passengers west of Campsie to parallel rail lines and reduce the impact on intersections between Dulwich Hill and Marrickville.

The addition of buses on existing infrastructure may cause potential bottlenecks at certain intersections. To understand potential pinch-points traffic assessments were undertaken and EIS assessed the following scenarios:

- Scenario A: Existing 2016 background traffic flows for a typical day
- Scenario B: Future 2023 traffic flows for a typical day
- Scenario C: Future 2023 traffic + construction traffic
- Scenario D: Future 2023 traffic + construction traffic + Baseline TTP
- Scenario E: Future 2023 traffic + construction traffic + Refined TTP

The EIS was subsequently updated by the Submissions and Preferred Infrastructure Report (PIR) in 2018.

1.1.2 Submissions and Preferred Infrastructure Report (SPIR)

Following the exhibition of the EIS, several changes were proposed to the exhibited project. The 'preferred project' enabled several issues raised in submissions to be addressed, but also significantly

minimised potential impacts – especially in respect of construction noise, traffic, heritage and vegetation impacts.

Key changes during the assessment of the preferred project included:

- Changes to construction sequencing and possession periods
 - Additional eight (8) weekend possessions per year
 - Two (2) week possessions during December holiday periods only (July possession period excluded)
 - Occasional weekday night-time possessions
- Concurrent closure of three (3) stations for up to two (2) months
- Revised works to road bridges
- Retaining and enhancing existing station layouts to facilitate improved operations with supporting precinct improvements to promote customer service.

The SPIR assessed the following scenarios:

- Scenario A: Future 2023 traffic flows for a typical day (from EIS)
- Scenario B: Future 2023 traffic + construction traffic + Refined TTP (from EIS)
- Scenario C: Future 2023 December traffic flows
- Scenario D: Future 2023 December traffic + construction traffic
- Scenario E: Future 2023 December traffic + construction traffic + Refined TTP.

1.1.3 July 2021 consistency assessment (previous assessment)

A revised TTP network and service frequencies were proposed by Sydney Metro over the July 2021 school holiday period. This period was excluded from the SPIR but was included under the EIS.

A full line closure was required for two weeks in July 2021 and bus replacement services were provided on seven routes to enable construction. The July 2021 consistency assessment (previous assessment) assessed the potential traffic impacts of providing bus replacement services along these seven routes.

1.1.4 July 2022 consistency assessment (this assessment)

An updated TTP network and service frequencies are proposed by Sydney Metro over the July 2022 school holiday period – 4 July 2022 to 15 July 2022. During this period, a full line closure would be required for two weeks, and bus replacement services would be provided on five routes to enable construction.

This assessment will assess the potential traffic impacts of providing bus replacement services along these five routes. Three of these routes were assessed during the previous assessment, however, two of these have been modified as part of the July 2022 TTP. Therefore, this will require the assessment of new intersections along these modified routes. Two new routes are also proposed that were not part of the previous assessment.

A preliminary sensitivity assessment was conducted that considered the bus replacement routes, frequencies, intersection control type, spare capacity likely to be available at the intersection, terminating and turn-around facilities as well as using a methodology similar to the EIS to determine the intersections requiring assessment.

The methodology for this assessment is discussed in further detail in Section 2.0.

1.2 Structure of this report

This report is structured in a manner that broadly replicates the SPIR.

- Section 2.0 describes the general transport context of this assessment and project area, as well as provides details of the methodology used for this assessment.
- Section 2.8 provides the assessment of potential impacts due to the July 2022 possessions during the construction phase.
- Section 4.0 provides the updated mitigation measures as an outcome from this assessment.

2.0 Methodology

2.1 Temporary transport strategy

The temporary transport strategy provides bus replacement services for commuters travelling from Sydenham to Bankstown. The proposed TTP routes, likely to operate during track possession period during July 2022 run along the train route, connecting all stations shown in Figure 1.

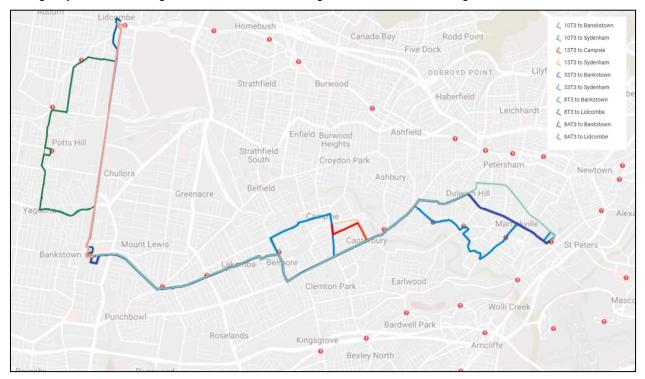


Figure 1 Project area and proposed July 2022 TTP routes

2.1.1 Proposed TTP routes

Broad descriptions of the bus replacement services proposed for the July 2022 possession period used for this assessment are given in Table 1.

Table 1 Proposed TTP routes for July 2022 possession

Route	Description
10T3	Bankstown to Sydenham (all stops)
13T3	Campsie to Sydenham (Limited stops - Canterbury then Sydenham)
33T3	Bankstown to Sydenham (Limited stops – All stops to Belmore then Sydenham)
8T3	Lidcombe to Bankstown (all stops)
8AT3	Lidcombe to Bankstown (Express to Lidcombe)

Detailed maps for the proposed TTP routes are included in Appendix A.

Route 10T3, Route 13T3 and Route 33T3 are proposed to be east-west routes running parallel to the T3 line and are proposed to be all stops services. Route 10T3 and Route 33T3 will run the full length of the rail line possession area from Bankstown to Sydenham. Route 13T3 will service the eastern segment of the possession area and only run between Campsie and Sydenham.

Route 8T3 and Route 8AT3 are proposed to service the western segment of the possession area by transporting passengers to the T1 parallel service to the north and are proposed to be all stop services. Both routes will transport passengers to Lidcombe from Bankstown.

2.1.2 Frequencies

The proposed frequency of bus replacement services (TTP) during the AM and PM peak periods as well as the Inter-Peak (IP) and weekends for the July 2022 possession period, is presented in Table 2.

Table 2 Proposed frequency of TTP routes for July 2022 possession

Route Direction		Towards	Frequency (services/hour)			
Route	Direction	Towarus	AM	PM	IP	Weekend
10T3	Inbound	Sydenham	38	12	12	8
10T3	Outbound	Bankstown	9	34	8	8
13T3	Inbound	Sydenham	25	5	7	8
13T3	Outbound	Campsie	4	22	4	8
33T3	Inbound	Sydenham	32	10	10	8
33T3	Outbound	Bankstown	4	28	6	8
8T3	Inbound	Bankstown	8	12	4	4
8T3	Outbound	Lidcombe	10	10	4	4
8AT3	Inbound	Bankstown	6	8	4	4
8AT3	Outbound	Lidcombe	6	8	4	4

The bus replacement service frequencies proposed for the July 2022 possession period were compared to the frequencies adopted for the EIS, SPIR and previous assessment. A preliminary sensitivity analysis determined list of previously modelled intersections that would potentially require reassessment as well as identify intersections that require new models to be developed. The methodology adopted for the preliminary sensitivity analysis is included in Appendix B.

Impacts of the bus replacement services during the IP and weekend (Saturdays and Sundays) have not been assessed. This is due to lower background traffic generally observed on weekends and proposed frequency of TTP routes during the weekend being lower in comparison to the weekday peak period. Thus, the impacts on network due to the TTP services during the weekend peak period are likely to be similar or lower compared to the weekday peak period.

2.2 Intersection selection methodology

The methodology used during the preliminary sensitivity analysis to determine intersections for inclusion in this assessment is detailed below. As shown in Figure 2, a combination of sensitivity analysis and Level of Service (LOS) filter was used to optimise the number of intersections to be modelled.

Detailed methodology and outcomes from the preliminary sensitivity analysis are included in Appendix B.

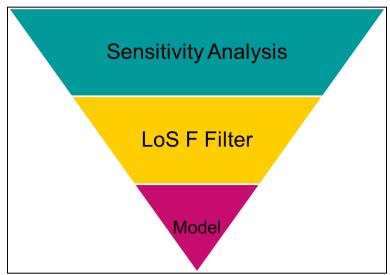


Figure 2 Methodology adopted for preliminary sensitivity analysis

Based on the methodology detailed in Appendix B, intersections were allocated to five different categories. These categories are:

- Category 1 New modelling assessment: Intersections that were not previously assessed and where bus volumes are higher than 15 buses per hour and those that do not qualify under Category 4
- Category 2 Modelling re-assessment: 'Reassessment' intersections were those intersections
 where the proposed routes would pass with higher expected bus volumes than those previously
 assessed
- Category 3 No modelling re-assessment: 'No Reassessment' intersections were those
 intersections where only construction routes would pass and/ or where the proposed routes would
 pass but with similar or lower bus volumes when compared to the EIS, SPIR or the previous
 assessment (July 2021 CA). These intersections could therefore be reasonably expected to
 perform similarly or better during a July 2022 scenario as a worse-case scenario had already been
 assessed
- Category 4 Sensitivity test: 'Sensitivity test' intersections were those intersections where the
 proposed routes would pass with lower or similar bus volumes when compared to the EIS, SPIR or
 the previous assessment but did not require modelling re-assessment based on sensitivity testing
 as detailed in 2.2.4
- New modelling assessment, but disregarded: Intersections that are new but do not meet the criteria to fall under Category 1.

The preliminary sensitivity analysis enabled the identification of intersections that are likely to have potential impacts due to the addition of TTP buses and therefore requiring further detailed analysis under Category 1, 2 and 4. The potential impacts of providing TTP services on the existing network are discussed in Section 3.0 followed by mitigation measures discussed in Section 4.0.

2.2.1 Category 1 – New modelling assessment

In the study area, thirteen (13) intersections were categorised as Category 1. The intersections that are included in Category 1 are shown in Figure 3 with the description of each included in Table 3.

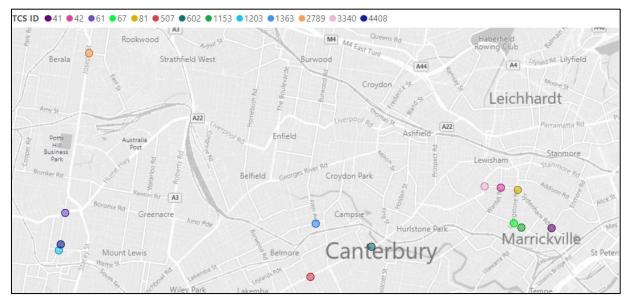


Figure 3 Category 1 intersections site map

Table 3 Category 1 intersections

TCS	Intersection description
TCS 41	Sydenham Road / Victoria Road
TCS 42	Wardell Road / Frazer Street
TCS 61	Hume Highway / Chapel Road / Rookwood Road
TCS 67	Marrickville Road / Livingstone Road
TCS 81	Livingstone Road / Sydenham Road / Frazer Street
TCS 507	Canterbury Road / Charlotte Street / Thorncraft Parade
TCS 602	Canterbury Road / Fore Street
TCS 1153	Marrickville Road / Petersham Road
TCS 1203	Chapel Road / Rickard Road
TCS 1363	Fifth Avenue / Ninth Avenue
TCS 2789	Joseph Street / Georges Avenue
TCS 3340	New Canterbury Road / Frazer Street
TCS 4408	Chapel Road / French Avenue

2.2.2 Category 2 – Modelling re-assessment

In the study area, fourteen (14) intersections were categorised as Category 2 and required re-assessing the model setup as part of previous assessments. The intersections that are included in Category 2 are shown in Figure 4 with the description of each included in Table 4.

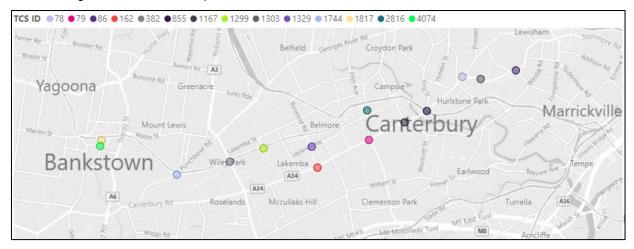


Figure 4 Category 2 intersections site map

Table 4 Category 2 intersections

TCS	Intersection description
TCS 78	New Canterbury Road / Canterbury Road
TCS 79	Canterbury Road / Beamish Street / Bexley Road
TCS 86	New Canterbury Road / Marrickville Road / Dulwich Street
TCS 162	Canterbury Road / Burwood Road
TCS 382	King Georges Road / The Boulevarde
TCS 855	Canterbury Road / Jeffrey Street
TCS 1167	Canterbury Road / Wonga Street
TCS 1299	Haldon Street / The Boulevarde
TCS 1303	New Canterbury Road / Duntroon Street
TCS 1329	Burwood Road / Leylands Parade
TCS 1744	Punchbowl Road / The Boulevarde / South Terrace
TCS 1817	Restwell Street / South Terrace
TSC 2816	Beamish Street / Amy Street
TCS 4074	Restwell Street / Raymond Street / Greenfield Parade

2.2.3 Category 3 – No modelling re-assessment

In the study area, fourteen (14) intersections were categorised as Category 3 and require no modelling re-assessment of previous models. The intersections that are included in Category 3 are shown in Figure 5 with the description of each included in Table 5.

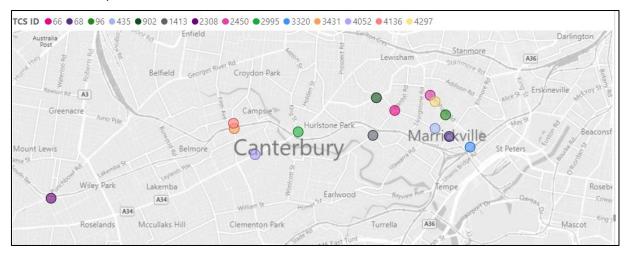


Figure 5 Category 3 intersections site map

Table 5 Category 3 intersections

TCS	Intersection description	Justification
TCS 66	Marrickville Road / Wardell Road	During the possession period in July 2022, the intersection is expected to have: • 8 TTP buses in the AM peak • 50 TTP buses in the PM peak The bus volumes during the AM peak hour are less than 15 and therefore likely to have negligible impacts in the AM peak hour. In the PM peak hour, the intersection is likely to have capacity to accommodate 50 replacement services. This is based on the SPIR assessment where the intersection was able to accommodate 84 bus replacement services in the PM peak hour and operate at satisfactory level of service C. Thus, the addition of 50 replacement services in the PM peak hour is likely to result in satisfactory intersection operations.

TCS	Intersection description	Justification
TCS 68	Marrickville Road / Victoria Road	During the possession period in July 2022, the intersection is expected to have: • 55 TTP buses in the AM peak • 96 TTP buses in the PM peak The intersection is likely to have capacity to accommodate 55 bus replacement services. This is based on previous SPIR assessment where intersection was able to accommodate 111 bus replacement services in the AM peak hour and operate at LOS C. In the PM peak hour, the intersection is likely to accommodate 96 bus replacement services. This is based on the previous SPIR assessment where intersection was able to accommodate 113 bus replacement services in the PM peak hour and operate at LOS D. Thus, the addition of replacement services in the AM and PM peak
		hour is likely to have satisfactory operations.
TCS 96	Sydenham Road / Illawarra Road	This intersection is near the intersection of Sydenham Road and Victoria Road (TCS 41) and possess similarities in intersection geometry and potential traffic volumes in the peak hours. During the possession period in July 2022, the intersection is expected to have: • 57 TTP buses in the AM peak • 15 TTP buses in the PM peak The intersection is likely to operate similar to the intersection of Sydenham Road and Victoria Road (TCS 41) as detailed in Section 3.2.1. During the PM peak, the volumes are less than 15 buses in the peak hour. Therefore, the addition of TTP buses to this intersection is likely to have negligible impacts in the PM peak hour.
TCS 435	Marrickville Road / Illawarra Road	During the possession period in July 2022, the intersection is expected to have: • 55 TTP buses in the AM peak • 96 TTP buses in the PM peak The intersection is likely to have capacity to accommodate 55 bus replacement services. This is based on previous SPIR assessment where intersection was able to accommodate 111 bus replacement services in the AM peak hour and operate at LOS B. In the PM peak hour, the intersection is likely to accommodate 96 bus replacement services. This is based on the previous SPIR assessment where intersection was able to accommodate 113 bus replacement services in the PM peak hour and operate at LOS C. Thus, the addition of replacement services in the AM and PM peak hour is likely to have acceptable operations.

TCS	Intersection description	Justification
TCS 902	New Canterbury Road / Constitution Road	This intersection is adjacent to the intersection of Canterbury Road and Marrickville Road (TCS 86) and possess similarities in intersection geometry and potential traffic volumes in the peak hours.
		During the possession period in July 2022, the intersection is expected to have: 65 TTP buses in the AM peak 65 TTP buses in the PM peak
		The intersection is likely to have capacity to accommodate 65 bus replacement services. This is based on previous SPIR assessment of TCS 86 where intersection was able to accommodate 51 bus replacement services in the AM peak hour and operate at LOS B. Traffic volumes in the AM peak hour are expected to be lower in July 2022 by 200 vehicles in comparison to volumes assessed in SPIR.
		In the PM peak hour, the intersection is likely to accommodate 65 bus replacement services. This is based on the results of refurbished TCS 86 model in this assessment.
		This addition of replacement services in the AM and PM peak hour is likely to have acceptable operations.
TCS 1413	Wardell Road / Ewart Street	During the possession period in July 2022, the intersection is expected to have: 47 TTP buses in the AM peak 46 TTP buses in the PM peak
		The intersection is likely to have capacity to accommodate 47 bus replacement services. This is based on previous SPIR assessment where intersection was able to accommodate 62 bus replacement services in the AM peak hour and operate at LOS C.
		This the addition of replacement services in the AM and PM peak hour is likely to have acceptable operations.
		In the PM peak hour, the intersection is likely to accommodate 65 bus replacement services. This is based on the previous SPIR assessment where intersection was able to accommodate 61 bus replacement services in the PM peak hour and operate at LOS E.
TCS 2308	The Boulevarde / Arthur Street	During the possession period in July 2022, the intersection is expected to have: 83 TTP buses in the AM peak 84 TTP buses in the PM peak
		The intersection is likely to have capacity to accommodate 83 bus replacement services. This is based on previous SPIR assessment where intersection was able to accommodate 60 bus replacement services in the AM peak hour and operate at LOS B.

TCS	Intersection description	Justification
		In the PM peak hour, the intersection is likely to have capacity to accommodate 84 replacement services. This is based on the SPIR assessment where the intersection was able to accommodate 60 bus replacement services in the PM peak hour and operate at LOS B.
		Though the TTP bus volumes have increased (by about 15 buses per hour), the impact of these additional buses on the intersection is expected to be similar or lower compared with the SPIR assessments, as the forecast July 2022 traffic volumes are lower (than those forecast in the SPIR. As such, it is likely that the intersection will operate at LOS B or better compared to the SPIR forecasts for both AM and PM peak hours.
TCS 2450	Sydenham Road / Park Road / Petersham Road	This is a minor intersection with TTP buses going straight through the intersection. Therefore, the potential impacts due to TTP buses are expected to be minimal.
TCS 2995	Canterbury Road / Minter Street	This is a minor intersection with TTP buses going straight through the intersection. Therefore, the potential impacts due to TTP buses are expected to be minimal.
TCS 3320	Railway Parade / Gleeson Avenue	During the possession period in July 2022, the intersection is expected to have: 17 TTP buses in the AM peak 50 TTP buses in the PM peak The bus volumes during the AM peak hour are 17 buses and therefore likely to have negligible impacts in the AM peak hour. In the PM peak hour, the intersection is likely to have capacity to accommodate 84 replacement services. This is based on the SPIR assessment where the intersection was able to accommodate 139 bus replacement services in the PM peak hour and operate at LOS A. Thus, the addition of 84 replacement services in the PM peak hour is likely to result in satisfactory intersection operations.
TCS 3431	Beamish Street / South Parade / Lilian Lane	During the possession period in July 2022, the intersection is expected to have: • 51 TTP buses in the AM peak • 68 TTP buses in the PM peak The intersection is likely to have capacity to accommodate 51 bus replacement services. This is based on previous SPIR assessment where intersection was able to accommodate 81 bus replacement services in the AM peak hour and operate at LOS B. In the PM peak hour, the intersection is likely to accommodate 68 bus replacement services. This is based on the previous SPIR assessment where intersection was able to accommodate 80 bus replacement services in the PM peak hour and operate at LOS C. Thus, the addition of 51 replacement services in the AM peak hour and 68 replacement services in the PM peak hour is likely to result in satisfactory intersection operations.

TCS	Intersection description	Justification
TCS 4052	Canterbury Road / Duke Street	This is a minor intersection with TTP buses going straight through the intersection. Therefore, the potential impacts due to TTP buses are expected to be minimal.
TCS 4136	Beamish Street / Clissold Parade	During the possession period in July 2022, the intersection is expected to have: 47 TTP buses in the AM peak 46 TTP buses in the PM peak The intersection is likely to have capacity to accommodate 47 bus replacement services. This is based on previous SPIR assessment where intersection was able to accommodate 82 bus replacement services in the AM peak hour and operate at LOS A. In the PM peak hour, the intersection is likely to accommodate 46 bus replacement services. This is based on the previous SPIR assessment where intersection was able to accommodate 82 bus replacement services in the PM peak hour and operate at LOS E.
TCS 4297	Sydenham Road / Centennial Street	This is a minor intersection with TTP buses going straight through the intersection. Therefore, the potential impacts due to TTP buses are expected to be minimal.

2.2.4 Category 4 – Sensitivity test

In the study area seven (7) intersections were categorised as Category 4. The intersections that are included in Category 3 are shown in Figure 6 with the description of each included in Table 6.

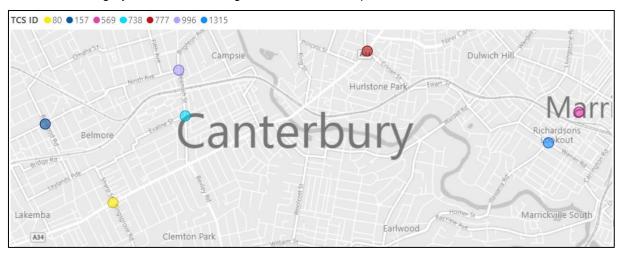


Figure 6 Category 4 intersection site map

Table 6 Category 4 intersections

TCS	Intersection description
TCS 80	Canterbury Road / Kingsgrove Road / Sharp Street
TCS 157	Burwood Road / Lakemba Street
TCS 569	Illawarra Road / Petersham Road
TCS 738	Beamish Street / Evaline Street
TCS 777	Canterbury Road / Queen Street / Crinan Street

TCS	Intersection description
TCS 996	Beamish Street / Ninth Avenue
TCS 1315	Illawarra Road / Warren Road

Sensitivity testing was undertaken using two levels of analysis:

- Sensitivity analysis; a comparison between the previously modelled total volumes (EIS, SPIR or July 2021 CA) and the forecast July 2022 total volumes
- LOS filtering; filtering criteria set for the previously modelled intersection LOS (EIS, SPIR or July 2021 CA) – a LOS A, B or C were expected to perform with a similar LOS with the additional TTP buses, and a LOS E or F, which is near or over capacity, were likely to perform the same (i.e. poor conditions)

The outcomes from the sensitivity tests are presented in Figure 7 for the AM peak and Figure 8 for the PM peak. It is evident that for the intersections in Category 4, the modelled volumes from the previous assessments are generally higher or similar compared to the forecast volumes for July 2022 during both AM and PM peak hours, except TCS 80 where there is a marginal increase. These intersections could therefore be reasonably expected to perform similar or better during a July 2022 scenario as a worse-case scenario had already been assessed.

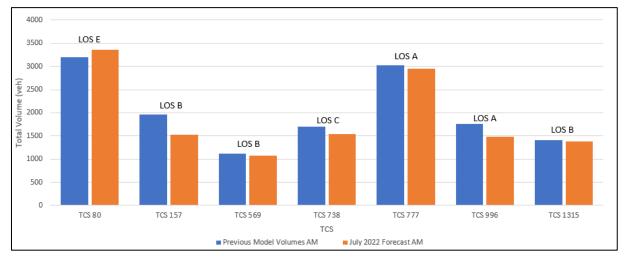


Figure 7 Category 4 intersections - Sensitivity tests for AM peak hour

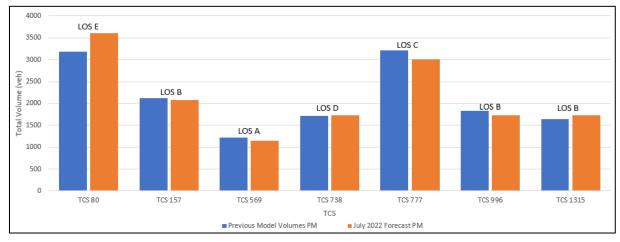


Figure 8 Category 4 intersections - Sensitivity tests for PM peak hour

2.2.5 New assessment, but disregarded

In the study area, thirty (30) intersections were disregarded from the assessment based on the filtering criteria detailed in Section 2.2. The intersections in this category are included in Table 7.

Table 7 New assessment, but disregarded intersections

TCS	Site Description
TCS 225	Rookwood Road/ Brunker Road
TCS 436	Hume Highway / Auburn Road / William Street
TCS 935	Olympic Drive / Joseph Street
TCS 1135	Hume Highway / Meredith Street / The Boulevarde
TCS 1159	Rookwood Road / Muir Road
TCS 1326	Olympic Dr / Church Street / Bridge Street
TCS 1414	Marrickville Road / Gladstone Street
TCS 1451	Joseph Street / Amy Street / Weeroona Road
TCS 1542	Hume Highway / Cooper Road
TCS 1545	Hume Highway / Highland Avenue
TCS 1597	Church Street / John Street
TCS 1725	Joseph Street / Botanica Drive
TCS 1771	Auburn Road / Ferrier Road
TCS 1921	Illawarra Road / Arthur Street
TCS 1932	New Canterbury Road / Myra Road / Union Street
TCS 1966	New Canterbury Road / Pigott Street
TCS 1991	Chapel Road (N) / Raw Avenue
TCS 2015	The Boulevarde / Croydon Street (E)
TCS 2065	Sydenham Road / Farr Street
TCS 2072	Burwood Road (N) / Bridge Road
TCS 2192	Auburn Road / Pobje Avenue / Gazzard Street
TCS 2206	North Terrace / Fetherstone Street / Bankstown City Plaza
TCS 2468	Olympic Drive / Vaughan Street
TCS 2649	Olympic Dr / New Street W
TCS 2800	Joseph Street / Vaughan Street
TCS 2935	The Mall / The Appian Way
TCS 3222	Olympic Drive / Kerrs Road
TCS 3492	Rookwood Road / Boardman Street
TCS 3628	Evaline Street / Beamish Street
TCS 4127	South Terrace / Railway Station

2.3 Performance indicators

In order to assess the impact of the above scenarios on the performance of the intersections, the main indicators were:

- Degree of Saturation (DoS): the ratio between traffic volumes and capacity (v/c) of the intersection, used to measure how close to capacity an intersection is operating. The DoS is a direct measure of the congestion level of the intersection and as DoS approaches 1.0, both queue length and delays increase rapidly. Satisfactory operations usually occur with a DoS lower than 0.9.
- Average Delay: duration, in seconds, of the average vehicle waiting time at an intersection.
- Level of Service (LoS): a measure of the overall performance of the intersection. The levels of service (LoS) presented in Table 8 are in accordance with the TfNSW Traffic Modelling Guidelines and LoS gives an indication of how well the intersection is performing regarding delay incurred by vehicles. For signalised intersections the LoS is based on the average intersection delay, and the most delayed movement for priority-controlled intersections and roundabouts.

Table 8 Level of Service criteria

Level of service (LOS)	Average delay / vehicle (sec/veh)	Description
А	< 14	Good operation
В	15 to 28	Good with acceptable delays and spare capacity
С	29 to 42	Satisfactory
D	43 to 56	Operating near capacity
Е	57 to 70	At capacity; at signals incidents would cause excessive delays
F	> 70	Exceeds capacity; roundabouts require other control mode

Source: Guide to Traffic Generating Developments, RTA, 2002

2.4 Baseline conditions

For assessment of road traffic conditions during the possession period in July 2022, background traffic volumes (baseline) likely to use the intersections are required to be forecast. As the possessions are planned during the school holiday period, a seasonal reduction factor to account for the lower traffic volumes generally experienced during July school holidays shall be considered. This baseline shall also incorporate post-COVID lockdown impacts in travel behaviour and traffic volume profiles at the intersections.

EIS, SPIR and the previous assessments used growth rates to forecast future traffic volumes. Due to the COVID-19 pandemic, the applied growth factors (about 1.5% per annum) are considered to be high for use in forecasting July 2022 baseline traffic. Therefore, as agreed with Sydney Metro, the future baseline traffic volumes for July 2022 (Scenario 1) were estimated based on recent traffic volume data (March 2022) by applying seasonal reduction factors. SCATS detector data for the intersections observed for a typical weekday have been used to forecast the July 2022 baseline traffic volumes as detailed in Section 2.4.2.

2.4.1 Review of impacts due to COVID-19

An assessment of traffic volumes and peak period traffic profiles during 2019 (pre-COVID lockdowns) and 2022 (post-COVID lockdowns) was undertaken at three sample intersections spread across the study area to determine if the impacts of COVID-19 are still prevalent. This is required to understand if a factor needs to be applied to the forecast traffic volumes for July 2022 to account for potential impacts

on traffic volumes due to COVID-19. The location of the sample intersections identified for this assessment is presented in Figure 9.

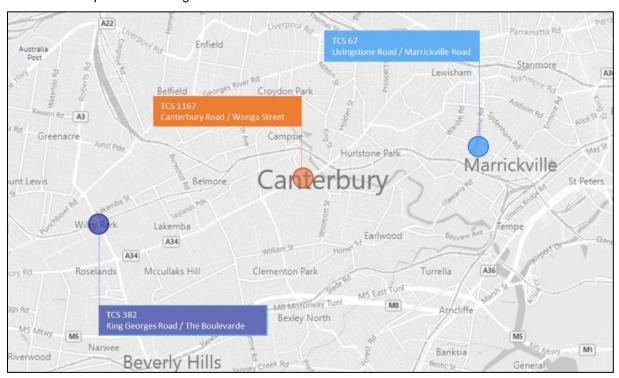


Figure 9: Location of sample sites reviewed

The assessment was undertaken using SCATS detector data for a typical weekday for the selected intersections from March 2019 and March 2022. The assessment indicates that traffic volumes and peak period traffic profiles for March 2022 are observed to be similar to or slightly lower in comparison to March 2019, as presented in Figure 10, Figure 11 and Figure 12. Therefore, the use of March 2022 SCATS detector data to forecast July 2022 traffic volumes shall include changes in travel behaviour post COVID-19. As such, no adjustments to traffic data are required to be applied to consider impacts of COVID-19.

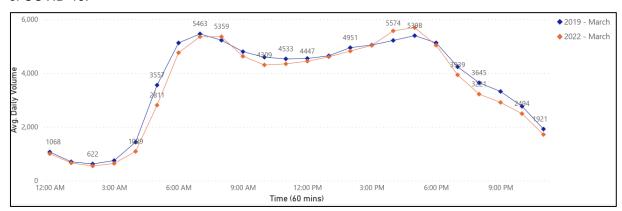


Figure 10: TCS 382 - King Georges Road / The Boulevarde

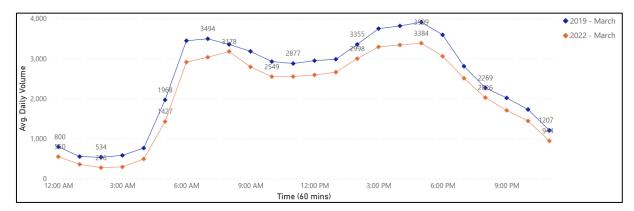


Figure 11: TCS 1167 - Canterbury Road / Wonga Street

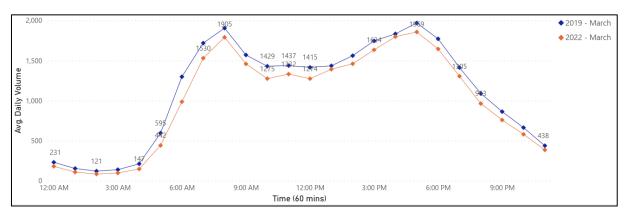


Figure 12: TCS 67 - Marrickville Road / Livingstone Road

2.4.2 Factors to produce July 2022 traffic volumes

Seasonal trends and school holidays tend to impact travel behaviours on the road network. To account for this, the following steps were undertaken to forecast July 2022 traffic volumes:

- Seasonal factors were calculated for each intersection by comparing peak hour traffic volumes recorded using SCATS detector loops in March 2019 (normal period) and July 2019 (school holiday period).
- The seasonal factors determined for each intersection were then applied to peak hour traffic volumes observed at the intersections in March 2022 to forecast the baseline traffic volumes for July 2022 (possession period) during the AM and PM peak hours.
- The turning proportions for traffic volumes on shared traffic lanes and the proportion of heavy vehicles and light vehicles at Category 1 intersections (new sites) were obtained from sample traffic counts undertaken during May 2022. For Category 2 models (re-assessment), both proportions were obtained from the previous assessments.
- A 10% correction factor is applied to the July 2022 forecast volumes to account for potential SCATS detector errors.
- Construction traffic volumes at the study area intersections were obtained from the EIS scenario for the peak construction period (2023).
- Alignment of proposed TTP bus routes and their frequencies were received from Sydney Metro (as
 detailed in Table 2). Based on this information, the number of TTP buses passing through each
 intersection during the AM and PM peak hour were estimated. This accounts for multiple routes
 passing through an intersection, if any.

2.5 Assessment scenarios

The scenarios assessed as part of this assessment are presented in Table 9.

Table 9 Assessment scenarios

Scenario	Description
Scenario 1	July 2022 (Future base) – This is used as the baseline conditions of background traffic during July 2022.
Scenario 2	July 2022 (Future base + SM Construction traffic) – This is used to test impacts of Sydney Metro construction traffic.
Scenario 3	July 2022 (Future base + SM Construction traffic + TTP) – This is used as the test scenario for the replacement bus services (5 routes).

For Category 2 sites, in addition to the future base scenario for July 2022 (Scenario 1), a comparison with the relevant assessment (EIS, SPIR or previous assessment) are also made.

For Category 4 sites, the assessment results include outcomes from the relevant assessment (EIS, SPIR or previous assessment), as new assessments were not completed.

2.6 Construction haulage traffic

Construction haulage routes were also considered during the Gap Analysis in the selection of intersections for assessment. These routes were categorised as follows, as per the EIS:

- Primary routes forming the main access for construction haulage vehicles
- Secondary routes provide links to the primary routes and State Roads
- Tertiary (alternative) routes are used as backup routes to connect to the primary and secondary routes

In the SPIR, construction works associated with the preferred project were revised since the assessment of the exhibited project in the EIS. However, in traffic terms, the peak hourly construction traffic volumes were found to be the same in the SPIR and EIS although there would be a reduction in the duration of the peak construction periods. So, whilst the total impact from construction may have been reduced as a result of the preferred project, the peak hourly volumes are expected to remain as per the EIS.

The EIS analysed the volumes of material required to be moved to and from each construction compound to determine the duration of construction and the total number of haulage vehicle movements required. A flat profile of haulage movements per day was assumed and a process of manual assignment of haulage vehicle movements to peak hours was undertaken.

Where daily haulage vehicle volumes to a compound were low (less than 10 per day), all haulage movements were assumed to take place during the peak hours. Where there were 10 or more haulage vehicles per day, 20% of vehicle movements were assigned to each of the peak hours.

This assessment follows the same methodology and uses the same construction traffic volumes as per the EIS. This assumption has been confirmed by Sydney Metro.

2.7 Bridge works

One of the most significant changes as a result of the preferred project was the revised bridge works along the project area. The assessment described in the EIS showed that there was a total of 26 bridges with different types of bridge closures that required significant bridge closures and diversions and resulted in significant impacts on the road network.

Bridge works for the preferred project include the installation of new traffic barriers, anti-throw screens as well as other protection measures as required. The preferred project does not require the closure of

the bridges for extended periods. It is also assumed that bridge works would be scheduled to minimise disruption to the traffic network and would not interface with the TTP scenario buses. Therefore, it is anticipated that bridges would be able to remain open to traffic during the bridge works. As such, impacts because of bridge works have not been assessed as part of this assessment.

2.8 Assumptions

The following assumptions were made to categorise the intersections:

- a. The proposed bus replacement routes and frequencies were as per the information received from Sydney Metro on 22 April 2022, i.e. five replacement services with the provided frequencies. These five routes are generally different to the routes considered in the previous July 2021 consistency assessments.
- b. Changes in the replacement bus routes require a number of new intersections to be assessed. For these new intersections, traffic surveys or recent traffic data has been used to capture turning movements and proportion of heavy and light vehicles to develop future base models.
- c. Seasonal/holiday reduction factors have been applied to account for lower traffic volumes during the school holiday period (in July) as detailed in Section 2.4.2.
- d. Construction haulage traffic is assumed to remain the same as the EIS. For new intersections that are being modelled as part of the July 2022 assessments, construction traffic volumes have been adapted from the EIS.
- Network closures/changes as part of Bridge works are assumed not to be in place during the possession period in July 2022.
- f. Covid-19 adjustment factor has not been applied as detailed in Section 2.4.1.
- g. Assessments have been undertaken for one typical weekday for the AM and PM peak hour.
- h. Intersections are excluded from the sensitivity assessments/modelling where the increase in bus volumes are up to 15 per hour. Such a small increase in bus volumes per hour are not anticipated to result in any significant changes to intersection performance.
- i. Majority of the intersections along two TTP routes proposed between Lidcombe and Bankstown (08T3 and 08AT3) have been excluded from the sensitivity assessments/modelling as the bus frequencies are very low and the network is assumed to have sufficient spare capacity to accommodate the small increase in TTP buses during the peak periods. Three intersections have multiple routes passing through, which results in a combined high frequency of TTP services during the peak hours. Therefore, these three intersections were included in the assessments.
- j. Unsignalised intersections along the bus routes have been excluded from the assessments based on the assumption that adjacent signalised intersections are likely to demonstrate the level of impact anticipated during the July 2022 TTP scenario.
- k. Some of the minor signalised intersections along the July 2022 TTP routes have been excluded from modelling/sensitivity assessments where the TTP bus routes go straight through without any turning movements. It is assumed that the impacts on such minor intersections will be minimal and can be assumed to be similar/less than the adjacent major signalised intersections that are being assessed as part of this assessment.
- SCATS data (detector volumes, signal phasing etc.) for all intersections, supported by traffic survey data for selected intersections have been used for this assessment. SCATS detector data was increased by 10% to account for any potential detector errors.
- m. 6am to 10am was adopted as the AM peak period and 3pm to 7pm was adopted as the PM peak period for this assessment.
- n. Traffic signal phasing for each site have been adopted from SCATS and the phases that run during the AM and PM peak hours on a typical weekday have been included in the models. As the assessments are being undertaken for a future scenario in July 2022, optimum cycle time settings have been used to replicate the traffic demand-based operations of the SCATS system. The lower and upper limits used for the optimum cycle time settings were adopted from SCATS. The optimum

cycle time for each site identified by SIDRA was also compared with the average cycle times observed during March 2022, and adjusted to ensure realistic cycle times are being used during the future scenario in July 2022.

o. Lane utilisation was included in the model, where applicable, based on SCATS detector volumes observed on each lane during March 2022.

2.9 Summary

In the study area, seventy-eight (78) signalised intersections were considered as part of this assessment. Based on the methodology detailed in Section 2.2 and Appendix B, intersections were allocated to five different categories. Thirty (30) intersections were disregarded from the assessment and fourteen (14) were categorised as Category 3 (no assessments), based on the filtering criteria detailed in Section 2.2. The remaining thirty-four (34) intersections were categorised for further assessments as follows:

- Category 1: Thirteen (13) intersections
- Category 2: Fourteen (14) intersections
- Category 4: Seven (7) intersections

The intersection assessments are detailed in Section 3.0. For a list of all the intersections considered as part of this assessment, refer to Appendix B.

3.0 Construction assessment

3.1 Assessment scenarios

This section presents the intersection modelling assessments undertaken for the July 2022 possession period. As discussed in Section 2.3, Category 1 and Category 2 intersections were assessed using the July 2022 forecast traffic volumes, whereas Category 4 intersections adopted either the EIS, SPIR or July 2021 assessments.

The following scenarios were included as part of the assessment as detailed in Section 2.5:

- Scenario 1: July 2022 (Future base) This is used as the baseline conditions of background traffic during July 2022.
- Scenario 2: July 2022 (Future base + SM Construction traffic) This is used to test impacts of Sydney Metro construction traffic.
- Scenario 3: July 2022 (Future base + SM Construction traffic + TTP) This is used as the test scenario for the replacement bus services (5 routes).

Modelled traffic volumes for Category 1 and Category 2 intersections are included in Appendix C with the detailed intersection movement summaries included in Appendix D.

3.2 Sydenham Station

Two (2) Category 1 intersections were assessed in the area surrounding Sydenham Station. These intersections are shown in Figure 13 with the category and description of each included in

Table 10.

Figure 13 Intersections assessed near Sydenham Station

Table 10 Intersections assessed near Sydenham Station

TCS	Intersection description		
Category 1			
TCS 41	Sydenham Road / Victoria Road		
TCS 81	Livingstone Road / Sydenham Road / Frazer Street		

3.2.1 TCS 41 – Sydenham Road / Victoria Road [Category 1]

Table 11 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 11 TCS 41 Sydenham Road / Victoria Road – intersection layout and SIDRA model layout

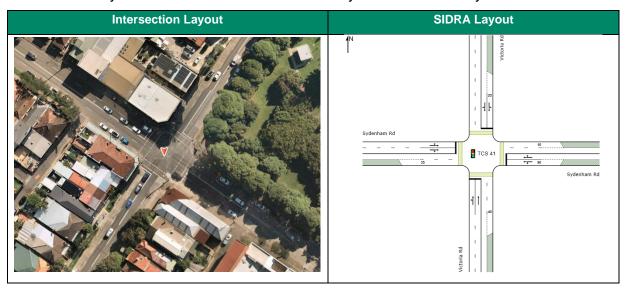


Table 12 provides a summary of the intersection performance assessment for this intersection.

Table 12 Sydenham Road / Victoria Road - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak (8am to 9am)				
Scenario 1: July 2022 (Future base)	2519	0.963	41.4	LOS C
Scenario 2: July 2022 (Future base + SM Construction traffic)	2548	0.996	46.8	LOS D
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	2608	1.064	71.8	LOS F
Scenario 3 with proposed mitigation	2608	1.044	55.6	LOS D
PM Peak (4pm to 5pm)				
Scenario 1: July 2022 (Future base)				
Scenario 2: July 2022 (Future base + SM Construction traffic)	TTP bus volumes are less than or equal to 15 buses per hour in the PM peak. Impacts are expected to be negligible as a result of additional TTP buses at this intersection during the PM peak.			
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	oi auditional 11	ir buses at tills i	mersection dumi	у ше гімі реак.

The Sydenham Road / Victoria Road intersection (Scenario 1) is forecast to operate at LOS D during the AM peak hour. The addition of TTP buses (Scenario 3) is forecast to increase the average delay (by about 30 seconds) and result in a reduced intersection performance (LOS F).

To improve the intersection performance during the AM peak, signal optimisation (in line with approved mitigation TC6) has been considered as shown in Table 13. By reducing the cycle time and

subsequently the phase times, the intersection performance during the AM peak is forecast to improve from LOS F to LOS D as shown in Table 12. The existing phase times are based on average phase times observed at this intersection during a typical weekday in March 2022.

Modelling the intersection in Scenario 3 with additional green time for the TTP bus movements indicates that the intersection is forecast to operate at LOS D with a slight increase in delay (less than 15 seconds) compared to Scenario 1.

Table 13 Sydenham Road / Victoria Road - Optimised signal phase time

Phase Time						
Phase	Α	В	С			
Phase Diagram	Phase A REF Victoria Rd Day Impuration of State of Stat	Phase B Victoria Rd JIL Day Manual Manua	Phase C Victoria Rd Pa Wegung Weg			
Existing Phase Time (sec)	31	14	53			
Proposed Phase Time (sec)	16	12	45			
Difference (Proposed - Existing)	-15	-2	-8			

3.2.2 TCS 81 – Livingstone Road / Sydenham Road / Frazer Street [Category 1]

Table 14 presents the layout of the intersection as per latest the NearMap imagery and the modelled layout in SIDRA.

Table 14 TCS 81 Livingstone Road / Sydenham Road / Frazer Street – intersection layout and SIDRA model layout

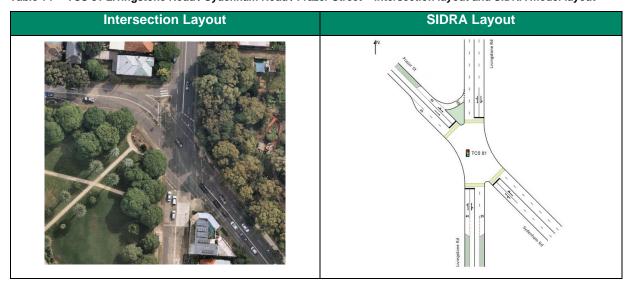


Table 15 provides a summary of the intersection performance assessment for this intersection.

Table 15 Livingstone Road / Sydenham Road / Frazer Street - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	Los	
AM Peak (8am to 9am)					
Scenario 1: July 2022 (Future base)	2080	0.773	20.5	LOS B	
Scenario 2: July 2022 (Future base + SM Construction traffic)	2080	0.773	20.5	LOS B	
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	2140	0.883	21.6	LOS B	
PM Peak					
Scenario 1: July 2022 (Future base)					
Scenario 2: July 2022 (Future base + SM Construction traffic)	the PM peak. I	Impacts are expe	or equal to 15 bu	ible as a result	
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	or additional 1	of additional TTP buses at this intersection during the PM peak.			

The Marrickville Road / Livingstone Road intersection is forecast to operate at LOS B during the AM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS B. LOS B would not cause noticeable delays for commuters in the peak hour.

3.3 Marrickville Station

Two (2) Category 1 and two (2) Category 4 intersections were assessed in the area surrounding Marrickville Station. These intersections are shown in Figure 14 with the category and description of each included in Table 16.

Figure 14: Intersections assessed near Marrickville Station

Table 16 Marrickville Station assessed intersections

TCS	Intersection description		
Category 1			
TCS 67	Marrickville Road / Livingstone Road		
TCS 1153	Marrickville Road / Petersham Road		
Category 4			
TCS 569	Illawarra Road / Petersham Road		
TCS 1315	Illawarra Road / Warren Road		

3.3.1 TCS 67 – Marrickville Road / Livingstone Road [Category 1]

Table 17 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 17 TCS 67 Marrickville Road / Livingstone Road – intersection layout and SIDRA model layout

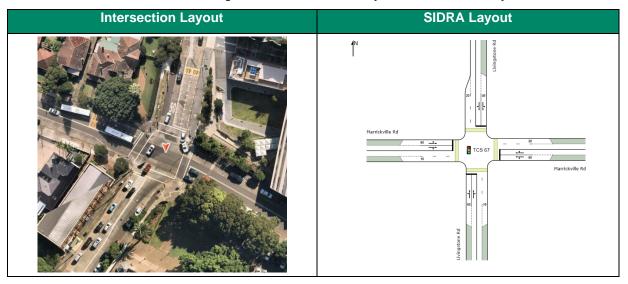


Table 18 provides a summary of the intersection performance assessment for this intersection.

Table 18 Marrickville Road / Livingstone Road - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS	
AM Peak					
Scenario 1: July 2022 (Future base)					
Scenario 2: July 2022 (Future base + SM Construction traffic)	the AM peak. Ir	TTP bus volumes are less than or equal to 15 buses per hour in the AM peak. Impacts are expected to be negligible as a result of additional TTP buses at this intersection during the AM peak.			
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	additional TTP buses at this intersection during the Aivi peak.			the Aw peak.	
PM Peak (5pm to 6pm)					
Scenario 1: July 2022 (Future base)	2037	0.688	14.7	LOS B	
Scenario 2: July 2022 (Future base + SM Construction traffic)	2037	0.688	14.7	LOS B	
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	2089	0.711	14.9	LOS B	

The Marrickville Road / Livingstone Road intersection is forecast to operate at LOS B during the PM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS B. LOS B would not cause noticeable delays for commuters in the peak hour.

3.3.2 TCS 1153 – Marrickville Road / Petersham Road [Category 1]

Table 19 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 19 TCS 1153 Marrickville Road / Petersham Road – intersection layout and SIDRA model layout

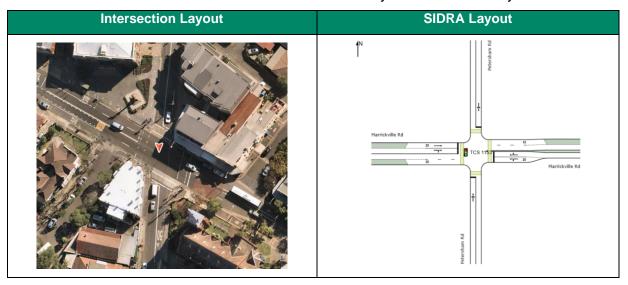
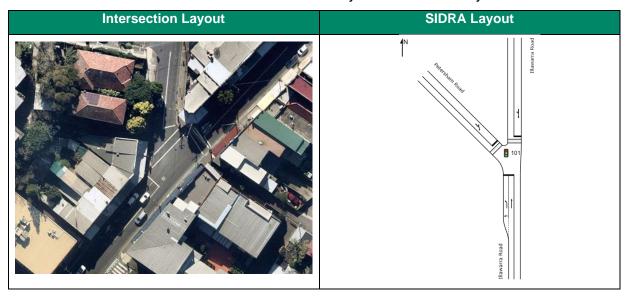


Table 20 provides a summary of the intersection performance assessment for this intersection.

Table 20 Marrickville Road / Petersham Road - intersection assessment summary


	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS	
AM Peak					
Scenario 1: July 2022 (Future base)					
Scenario 2: July 2022 (Future base + SM Construction traffic)	the AM. Impa	TTP bus volumes are less than or equal to 15 buses per hour in the AM. Impacts are expected to be negligible as a result of additional TTP buses at this interpretation during the AM people.			
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	additional TTP buses at this intersection during the AM peak.			tile Aw peak.	
PM Peak (5pm to 6pm)					
Scenario 1: July 2022 (Future base)	1628	0.507	11	LOS A	
Scenario 2: July 2022 (Future base + SM Construction traffic)	1628	0.507	11	LOS A	
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1681	0.542	10.6	LOS A	

The Marrickville Road / Petersham Road intersection is forecast to operate at LOS A during the PM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS A. LOS A would not cause noticeable delays for commuters in the peak hour.

3.3.3 TCS 569 – Illawarra Road / Petersham Road [Category 4]

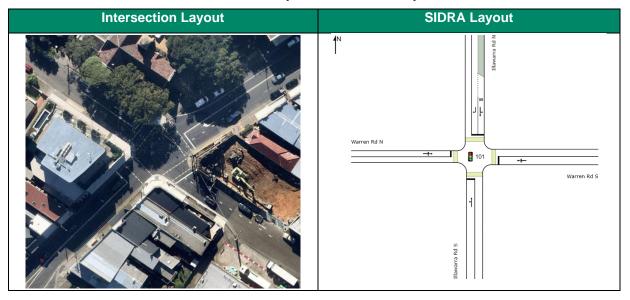
Table 21 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 21 TCS 569 Illawarra Road / Petersham Road – intersection layout and SIDRA model layout

Intersection performance results were adopted from the previous assessment as detailed in Section 2.2. Table 22 provides a summary of the intersection performance assessment for this intersection.

Table 22 Illawarra Road / Petersham Road - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak				
Scenario 1: July 2022 (Future base)	1271	0.5	17	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	1297	0.52	16	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1328	0.54	16	LOS B
PM Peak				
Scenario 1: July 2022 (Future base)	1381	0.53	12	LOS A
Scenario 2: July 2022 (Future base + SM Construction traffic)	1407	0.55	12	LOS A
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1437	0.58	12	LOS A


The Illawarra Road / Petersham Road intersection is forecast to operate at LOS B during the AM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS B. LOS B would not cause noticeable delays for commuters in the peak hour.

The Illawarra Road / Petersham Road intersection is forecast to operate at LOS A during the PM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS A. LOS A would not cause noticeable delays for commuters in the peak hour.

3.3.4 TCS 1315 – Illawarra Road / Warren Road [Category 4]

Table 23 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 23 Illawarra Road / Warren Road - intersection layout and SIDRA model layout

Intersection performance results were adopted from the previous assessment as detailed in Section 2.1.2. Table 24 provides a summary of the intersection performance assessment for this intersection.

Table 24 Illawarra Road / Warren Road - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	Los
AM Peak				
Scenario 1: July 2022 (Future base)	1545	0.81	25	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	1545	0.81	25	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1575	0.89	28	LOS B

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
PM Peak				
Scenario 1: July 2022 (Future base)	1847	0.89	22	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	1847	0.89	22	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1878	0.88	23	LOS B

The Illawarra Road / Warren Road intersection is forecast to operate at LOS B during both the AM and PM peak hours in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS B during both AM and PM peak hours. LOS B would not cause noticeable delays for commuters in the peak hour.

3.4 Dulwich Hill Station

Two (2) Category 1 and one (1) Category 2 intersections were assessed in the area surrounding Dulwich Hill Station. These intersections are shown in Figure 15 with the category and description of each included in Table 25.

Figure 15: Intersections assessed near Dulwich Hill Station

Table 25 Dulwich Station assessed intersections

TCS	Intersection description	
Category 1		
TCS 42	Wardell Road / Frazer Street	
TCS 3340	New Canterbury Road / Frazer Street	
Category 2		
TCS 86	New Canterbury Road / Marrickville Road / Dulwich Street	

3.4.1 TCS 42 – Wardell Road / Frazer Street [Category 1]

Table 26 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 26 TCS 42 Wardell Road / Frazer Street – intersection layout and SIDRA model layout

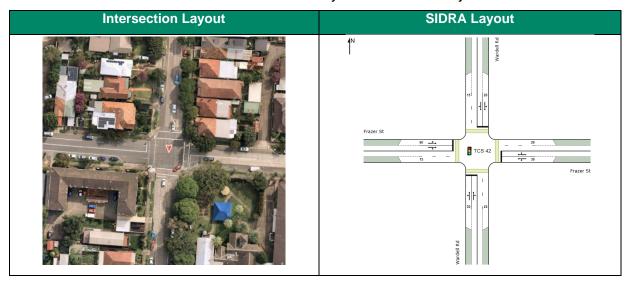


Table 27 provides a summary of the intersection performance assessment for this intersection.

Table 27 Wardell Road / Frazer Street - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak (8am to 9am)				
Scenario 1: July 2022 (Future base)	1337	0.768	12.7	LOS A
Scenario 2: July 2022 (Future base + SM Construction traffic)	1337	0.768	12.7	LOS A
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1397	0.722	14.2	LOS A
PM Peak				
Scenario 1: July 2022 (Future base)				
Scenario 2: July 2022 (Future base + SM Construction traffic)	the PM peak. Ir	npacts are expec	or equal to 15 butted to be negligib	le as a result of
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	additional TTP buses at this intersection during the PM peak.		uie rivi peak.	

The Wardell Road / Frazer Street intersection is forecast to operate at LOS A during the AM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS A. LOS A would not cause noticeable delays for commuters in the peak hour.

3.4.2 TCS 3340 – New Canterbury Road / Frazer Street [Category 1]

Table 28 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 28 TCS 3340 New Canterbury Road / Frazer Street – intersection layout and SIDRA model layout

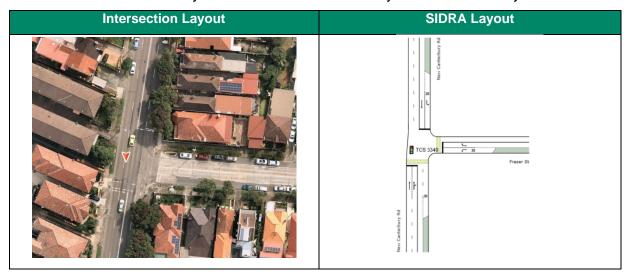


Table 29 provides a summary of the intersection performance assessment for this intersection.

Table 29 New Canterbury Road / Frazer Street - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak (8am to 9am)	,			
Scenario 1: July 2022 (Future base)	1889	0.709	16.3	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	1889	0.709	16.3	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1949	0.753	17.4	LOS B
PM Peak				
Scenario 1: July 2022 (Future base)				
Scenario 2: July 2022 (Future base + SM Construction traffic)	TTP bus volumes are less than or equal to 15 buses per hour in the PM peak. Impacts are expected to be negligible as a result of additional TTP buses at this intersection during the PM peak.			
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	or additional TTT buses at this intersection during the TW peak.			

The New Canterbury Road / Frazer Street intersection is forecast to operate at LOS B during the AM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS B. LOS B would not cause noticeable delays for commuters in the peak hour.

3.4.3 TCS 86 – New Canterbury Road / Marrickville Road / Dulwich Street [Category 2]

Table 30 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 30 TCS 86 New Canterbury Road / Marrickville Road / Dulwich Street - intersection layout and SIDRA model layout

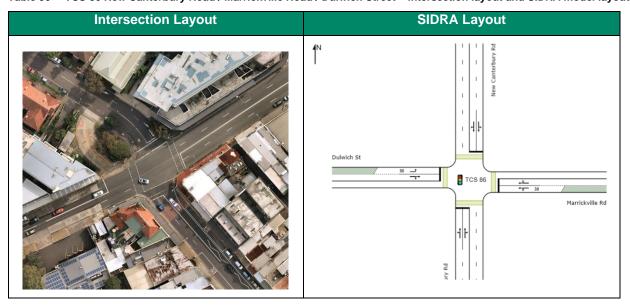


Table 31 provides a summary of the intersection performance assessment for this intersection.

Table 31 New Canterbury Road / Marrickville Road / Dulwich Street - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS	
AM Peak (8am to 9am)					
Scenario 1: July 2022 (Future base)	The July 2022 forecast traffic volumes (for Scenario 1) are lower by about 200 vehicles than the previously modelled traffic volumes used in the SPIR assessment for the AM peak hour (for the peak year of construction, which is 2023). PSIR assessment forecast the intersection to operate at LOS B during both the future base scenario				
Scenario 2: July 2022 (Future base + SM Construction traffic)	(Scenario 1) and TTP Scenario (Scenario 3). The SPIR assessed the intersection performance witl 51 TTP buses during the AM peak hour. The propose volumes for the July 2022 possession are 65 buses p the TTP bus volumes have increased (by about 15 buses).		performance with nour. The proposed on are 65 buses pe ed (by about 15 bus	d TTP bus er hour. Though ses per hour), the	
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	similar or lower co July 2022 traffic v such, it is likely th	ompared with the Strolumes are lower that the intersection SPIR forecasts for	al buses on the intersection is expected to be ed with the SPIR assessments, as the foreca s are lower than those forecast in the SPIR. A intersection will operate at LOS B or better orecasts for the AM peak hour during all to 3).		

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
PM Peak (5pm to 6pm)				
Scenario 1: July 2022 (Future base)	2489	0.637	27.4	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	2489	0.637	27.4	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	2558	0.7	28.1	LOS B

The New Canterbury Road / Marrickville Road / Dulwich Street intersection is forecast to operate at LOS B during the PM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS B during the PM peak hours. This aligns with the outcomes from the previous assessment which forecast a similar intersection performance (LOS B) during all scenarios. LOS B would not cause noticeable delays for commuters in the peak hour.

3.5 Hurlstone Park Station

Two (2) Category 2 and one (1) Category 4 intersections were assessed in the area surrounding Hurlstone Park Station. These intersections are show in Figure 16 with the category and description of each included in Table 32.

Figure 16: Intersections assessed near Hurlstone Park Station

Table 32 Hurlstone Park Station assessed intersections

TCS	Intersection description	
Category 2		
TCS 78	New Canterbury Road / Canterbury Road	
TCS 1303	New Canterbury Road / Duntroon Street	
Category 4		
TCS 777	Canterbury Road / Queen Street / Crinan Street	

3.5.1 TCS 78 – New Canterbury Road / Canterbury Road [Category 2]

Table 33 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 33 TCS 78 New Canterbury Road / Canterbury Road – intersection layout and SIDRA model layout

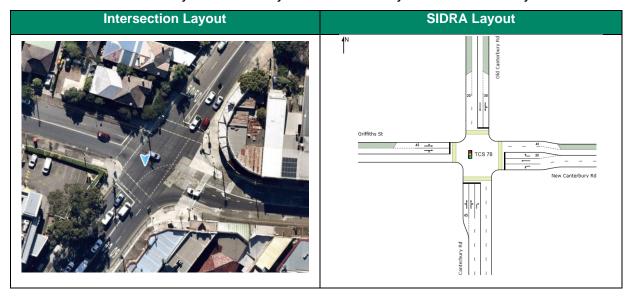


Table 34 provides a summary of the intersection performance assessment for this intersection.

Table 34 New Canterbury Road / Canterbury Road - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak (8am to 9am)	(ven/m)	Saturation	delay (S/VeII)	
Scenario 1: July 2022 (Future base)	3052	0.918	23.1	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	3278	0.908	24.7	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	3415	0.974	29.6	LOS C
PM Peak (5pm to 6pm)				
Scenario 1: July 2022 (Future base)	3357	0.908	29	LOS C
Scenario 2: July 2022 (Future base + SM Construction traffic)	3482	0.902	29.5	LOS C
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	3619	0.93	34.1	LOS C

The New Canterbury Road / Canterbury Road intersection is forecast to operate at LOS B during the AM peak in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is forecast to increase the average delay (less than 10 seconds) and result in a reduced intersection performance (LOS C). This aligns with the outcomes from the previous assessment which forecast a similar intersection performance (LOS C) during Scenario 3. LOS C would generally be considered acceptable during peak periods.

The New Canterbury Road / Canterbury Road intersection is forecast to operate at LOS C during the PM peak in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS C during the PM peak hour. This aligns with the outcomes from the previous assessment which forecast a similar intersection performance (LOS C) during Scenario 3. LOS C would generally be considered acceptable during peak periods.

3.5.2 TCS 1303 – New Canterbury Road / Duntroon Street [Category 2]

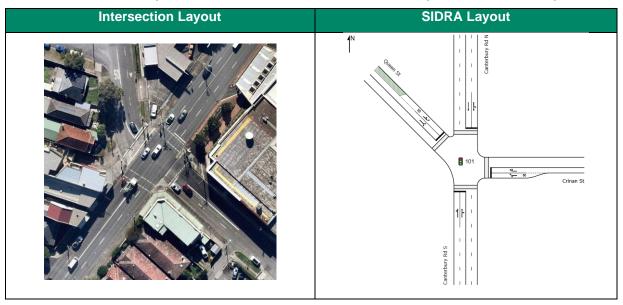
Table 35 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 35 TCS 1303 New Canterbury Road / Duntroon Street - intersection layout and SIDRA model layout



Table 36 provides a summary of the intersection performance assessment for this intersection.

Table 36 New Canterbury Road / Duntroon Street - intersection assessment summary


	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak (8am to 9am)				
Scenario 1: July 2022 (Future base)	1868	0.494	11.6	LOS A
Scenario 2: July 2022 (Future base + SM Construction traffic)	1868	0.494	11.6	LOS A
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1937	0.531	11.4	LOS A
PM Peak (5pm to 6pm)				
Scenario 1: July 2022 (Future base)	2220	0.662	10.1	LOS A
Scenario 2: July 2022 (Future base + SM Construction traffic)	2220	0.662	10.1	LOS A
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	2288	0.695	10.2	LOS A

The New Canterbury Road / Duntroon Street intersection is forecast to operate at LOS A during both the AM and PM peak hours in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS A during both peak hours. These outcomes are better than the outcomes from the previous assessment which forecast an intersection performance (LOS B) during all scenarios. LOS A would not cause noticeable delays for commuters in the peak hour.

3.5.3 TCS 777 – Canterbury Road / Queen Street / Crinan Street [Category 4]

Table 37 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 37 TCS 777 - Canterbury Road / Queen Street / Crinan Street - intersection layout and SIDRA model layout

Intersection performance results were adopted from the previous assessment as detailed in Section 2.2. Table 38 provides a summary of the intersection performance assessment for this intersection.

Table 38 Canterbury Road / Queen Street / Crinan Street - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS			
AM Peak	AM Peak						
Scenario 1: July 2022 (Future base)	3322	0.67	24	LOS B			
Scenario 2: July 2022 (Future base + SM Construction traffic)	3356	0.68	25	LOS B			
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	3436	0.73	26	LOS B			
PM Peak							
Scenario 1: July 2022 (Future base)	3595	0.78	20	LOS B			
Scenario 2: July 2022 (Future base + SM Construction traffic)	3629	0.8	22	LOS B			
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	3710	0.83	27	LOS C			

The Canterbury Road / Queen Street / Crinan Street intersection is forecast to operate at LOS B during the AM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS B. LOS B would not cause noticeable delays for commuters in the peak hour.

The Canterbury Road / Queen Street / Crinan Street intersection is forecast to operate at LOS B during the PM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to result in a slight increase to the average delay (less than 10 seconds) and is likely to result in a reduced intersection performance at LOS C. LOS C would generally be considered acceptable during the peak periods.

3.6 Canterbury Station

One (1) Category 1 and two (2) Category 2 intersections were assessed in the area surrounding Canterbury Station. These intersections are shown in Figure 17 with the category and description of each included in

Table 39.



Figure 17: Intersections assessed near Canterbury Station

Table 39 Canterbury Station assessed intersections

TCS	Intersection description
Category 1	
TCS 602	Canterbury Road / Fore Street
Category 2	
TCS 855	Canterbury Road / Jeffrey Street
TCS 1167	Canterbury Road / Wonga Street

3.6.1 TCS 602 – Canterbury Road / Fore Street [Category 1]

Table 40 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 40 TCS 602 Canterbury Road / Fore Street – intersection layout and SIDRA model layout

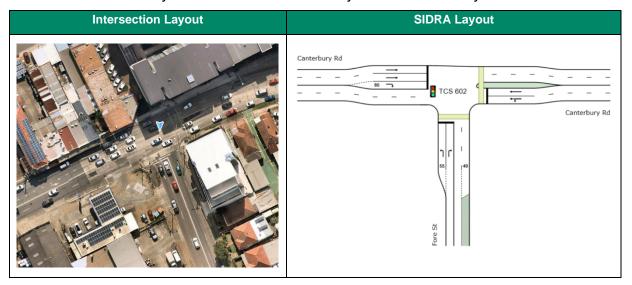


Table 41 provides a summary of the intersection performance assessment for this intersection.

Table 41 Canterbury Road / Fore Street - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	Los
AM Peak (8am to 9am)				
Scenario 1: July 2022 (Future base)	3644	0.835	23.7	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	3644	0.835	23.7	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	3762	0.857	25.5	LOS B
PM Peak (4pm to 5pm)				
Scenario 1: July 2022 (Future base)	3792	0.847	22.6	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	3792	0.847	22.6	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	3908	0.874	25.8	LOS B

The Canterbury Road / Fore Street intersection is forecast to operate at LOS B during both the AM and PM peak hours. The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and result in a similar intersection performance at LOS B during both AM and PM peak hours. LOS B would not cause noticeable delays for commuters in the peak hour.

3.6.2 TCS 855 – Canterbury Road / Jeffrey Street [Category 2]

Table 42 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 42 TCS 855 Canterbury Road / Jeffrey Street – intersection layout and SIDRA model layout

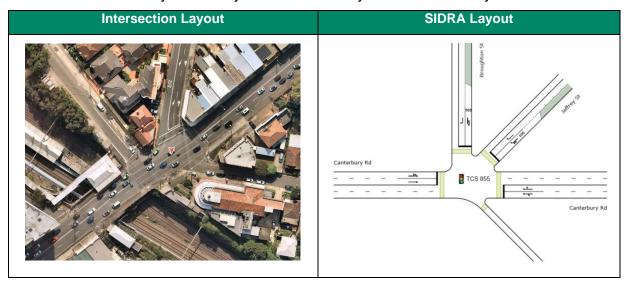


Table 43 provides a summary of the intersection performance assessment for this intersection.

Table 43 Canterbury Road / Jeffrey Street - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS		
AM Peak (8am to 9am)						
Scenario 1: July 2022 (Future base)	3353	0.859	18.6	LOS B		
Scenario 2: July 2022 (Future base + SM Construction traffic)	3394	0.87	19.2	LOS B		
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	3512	1.289	36.1	LOS C		
PM Peak						
Scenario 1: July 2022 (Future base)	The July 2022 forecast traffic volumes (for Scenario 1) are lower by about 75 vehicles than the previously modelled traffic volumes used in the EIS assessment for the PM peak hour (for the peak year of construction, which is 2023). EIS assessment forecast the intersection to operate at LOS C during both the future base scenario (Scenario 1) and TTP Scenario (Scenario 3). The EIS assessed the intersection performance with the addition of 81 TTP buses during the PM peak hour. The proposed TTP bus volumes for the July 2022 possession are 111 buses per hour. Though the TTP bus volumes have increased (by about 30					
Scenario 2: July 2022 (Future base + SM Construction traffic)						
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	buses per hour), the impact of these additional buses on the intersection is expected to be similar or lower compared with the SPIR assessments, as the forecast July 2022 traffic volumes are lower than those forecast in the EIS. As such, it is likely that the intersection will operate at LOS C or better compared to the EIS forecasts for the PM peak hour during all scenarios (Scenarios 1 to 3).					

The Canterbury Road / Jeffry Street intersection is forecast to operate at LOS B during the AM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to increase the average delay and is likely to result in a reduced intersection performance at LOS C. The assessments are aligned with the outcomes from the previous assessment which forecast a similar intersection performance (LOS B) for Scenario 1 and Scenario 2. Scenario 3 has a reduced intersection performance; however, the intersection is expected to perform at satisfactory levels at LOS C during the AM peak hour.

3.6.3 TCS 1167 – Canterbury Road / Wonga Street [Category 2]

Table 44 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 44 TCS 1167 Canterbury Road / Wonga Street – intersection layout and SIDRA model layout

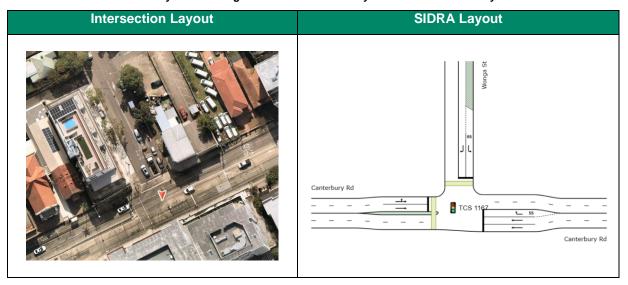


Table 45 provides a summary of the intersection performance assessment for this intersection.

Table 45 Canterbury Road / Wonga Street - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak (8am to 9am)				
Scenario 1: July 2022 (Future base)	3481	0.804	14.6	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	3481	0.804	14.6	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	3599	0.964	18.3	LOS B
PM Peak (3pm to 4pm)	T			
Scenario 1: July 2022 (Future base)	3936	0.873	16.2	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	3936	0.873	16.2	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	4053	0.878	19.6	LOS B

The Canterbury Road / Wonga Street intersection is forecast to operate at LOS B during both the AM and PM peak hours in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS B during both peak hours. This aligns with the outcomes from the previous assessment which forecast a similar intersection performance (LOS B) during all scenarios. LOS B would not cause noticeable delays for commuters in the peak hour.

3.7 Campsie Station

Two (2) Category 1, two (2) Category 2 and two (2) Category 4 intersections were assessed in the area surrounding Campsie Station. These intersections are shown in Figure 18 with the category and description of each included in Table 46.

Figure 18: Intersections assessed near Campsie Station

Table 46 Campsie Station assessed intersections

TCS	Intersection description
Category 1	
TCS 507	Canterbury Road / Charlotte Street / Thorncraft Parade
TCS 1363	Fifth Avenue / Ninth Avenue
Category 2	
TCS 79	Canterbury Road / Beamish Street / Bexley Road
TCS 2816	Beamish Street / Amy Street
Category 4	
TCS 738	Beamish Street / Evaline Street
TCS 996	Beamish Street / Ninth Avenue

3.7.1 TCS 507 - Canterbury Road / Charlotte Street / Thorncraft Parade [Category 1]

Table 53 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 47 TCS 507 Canterbury Road / Charlotte Street / Thorncraft Parade – intersection layout and SIDRA model layout

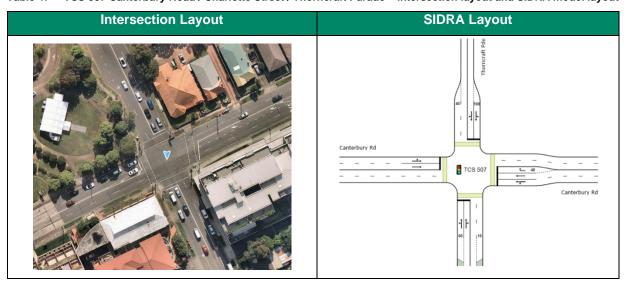


Table 54 provides a summary of the intersection performance assessment for this intersection.

Table 48 Canterbury Road / Charlotte Street / Thorncraft Parade - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak (8am to 9am)				
Scenario 1: July 2022 (Future base)	3247	1.02	48.3	LOS D
Scenario 2: July 2022 (Future base + SM Construction traffic)	3247	1.02	48.3	LOS D
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	3247	1.01	49.0	LOS D
PM Peak (5pm to 6pm)				
Scenario 1: July 2022 (Future base)	3829	0.997	38.9	LOSC
Scenario 2: July 2022 (Future base + SM Construction traffic)	3829	0.997	38.9	LOS C
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	3869	0.947	40.4	LOS C

The Canterbury Road / Charlotte Street / Thorncraft Parade intersection is forecast to operate at LOS D during the AM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS D. LOS D would generally be considered reasonable during the peak periods.

The Canterbury Road / Charlotte Street / Thorncraft Parade intersection is forecast to operate at LOS C during the PM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS C. LOS C would generally be considered acceptable during the peak periods.

3.7.2 TCS 1363 – Fifth Avenue / Ninth Avenue [Category 1]

Table 49 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 49 TCS 1363 Fifth Avenue / Ninth Avenue – intersection layout and SIDRA model layout

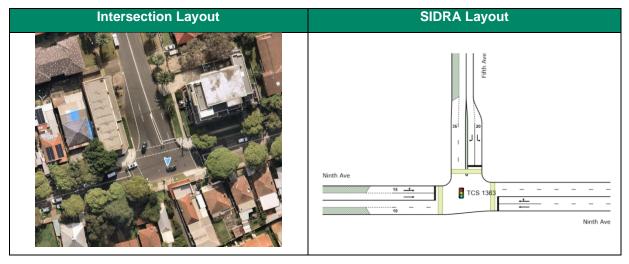


Table 50 provides a summary of the intersection performance assessment for this intersection.

Table 50 Fifth Avenue / Ninth Avenue - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak (8am to 9am)				
Scenario 1: July 2022 (Future base)	1121	0.558	16.7	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	1121	0.558	16.7	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1171	0.602	16.3	LOS B
PM Peak (5pm to 6pm)				
Scenario 1: July 2022 (Future base)	1408	0.629	16.8	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	1408	0.629	16.8	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1457	0.642	16.4	LOS B

The Fifth Avenue / Ninth Avenue intersection is forecast to operate at LOS B during both the AM and PM peak hours in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS B during both AM and PM peak hours. LOS B would not cause noticeable delays for commuters in the peak hour.

3.7.3 TCS 79 – Canterbury Road / Beamish Street / Bexley Road [Category 2]

Table 51 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 51 TCS 79 Canterbury Road / Beamish Street / Bexley Road – intersection layout and SIDRA model layout

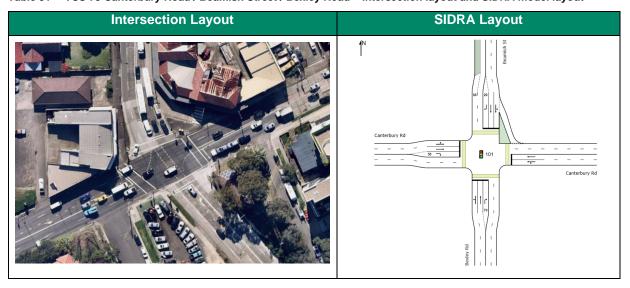


Table 52 provides a summary of the intersection performance assessment for this intersection.

Table 52 Canterbury Road / Beamish Street / Bexley Road - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS			
AM Peak (8am to 9am)	AM Peak (8am to 9am)						
Scenario 1: July 2022 (Future base)	4111	0.773	20.6	LOS B			
Scenario 2: July 2022 (Future base + SM Construction traffic)	4111	0.773	20.6	LOS B			
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	4188	0.847	20.2	LOS B			
PM Peak (5pm to 6pm)							
Scenario 1: July 2022 (Future base)	4032	0.837	21.4	LOS B			
Scenario 2: July 2022 (Future base + SM Construction traffic)	4032	0.837	21.4	LOS B			
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	4084	0.849	19.2	LOS B			

The Canterbury Road / Beamish Street / Bexley Road intersection is forecast to operate at LOS B during both the AM and PM peak hours in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS B during both peak hours. These outcomes are better than the outcomes from the previous assessment which forecast an intersection performance (LOS C) during all scenarios. LOS B would not cause noticeable delays for commuters in the peak hour.

3.7.4 TCS 2816 – Beamish Street / Amy Street [Category 2]

Table 53 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 53 TCS 2816 Beamish Street / Amy Street – intersection layout and SIDRA model layout

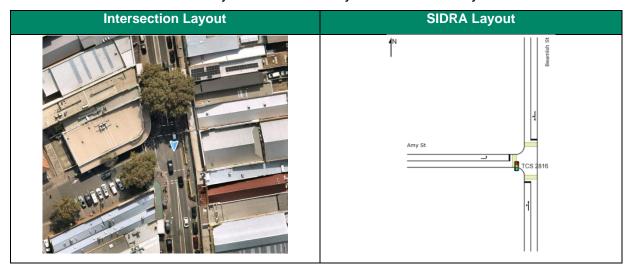
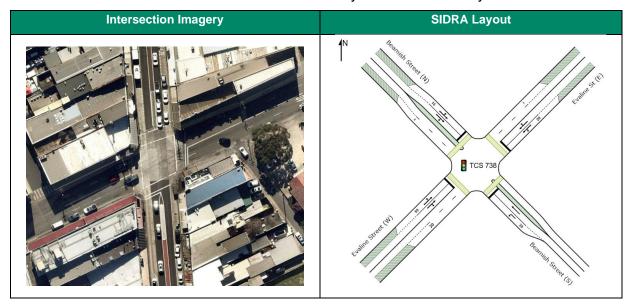


Table 54 provides a summary of the intersection performance assessment for this intersection.

Table 54 Beamish Street / Amy Street – intersection assessment summary


	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak (8am to 9am)				
Scenario 1: July 2022 (Future base)	1159	0.481	6.8	LOS A
Scenario 2: July 2022 (Future base + SM Construction traffic)	1159	0.481	6.8	LOS A
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1213	0.501	6.9	LOS A
PM Peak (4pm to 5pm)				
Scenario 1: July 2022 (Future base)	1381	0.631	14.4	LOS A
Scenario 2: July 2022 (Future base + SM Construction traffic)	1381	0.631	14.4	LOS A
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1453	0.715	13.9	LOS A

The Beamish Street / Amy Street intersection is forecast to operate at LOS A during both the AM and PM peak hours in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS A during both peak hours. These outcomes are better than the outcomes from the previous assessment which forecast a similar intersection performance (LOS A during the AM peak hour and LOS B during the PM peak hour) during all scenarios. LOS A would not cause noticeable delays for commuters in the peak hour.

3.7.5 TCS 738 – Beamish Street / Evaline Street [Category 4]

Table 55 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 55 TCS 738 – Beamish Street / Evaline Street – intersection layout and SIDRA model layout

Intersection performance results were adopted from the previous assessment as detailed in Section 2.2. Table 56 provides a summary of the intersection performance assessment for this intersection.

Table 56 Beamish Street / Evaline Street - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS		
AM Peak	AM Peak					
Scenario 1: July 2022 (Future base)		The future base scenario (Scenario 1) was not assessed in the previous assessment.				
Scenario 2: July 2022 (Future base + SM Construction traffic)	1639	0.76	29	LOS C		
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1681	0.93	31	LOS C		
PM Peak						
Scenario 1: July 2022 (Future base)	The future base scenario (Scenario 1) was not assessed in the previous assessment.					
Scenario 2: July 2022 (Future base + SM Construction traffic)	1732	0.83	31	LOS C		
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1790	1.11	47	LOS D		

The Beamish Street / Evaline Street intersection is forecast to operate at LOS C during the AM peak hour in the future base scenario with SM construction traffic (Scenario 2). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS C during the AM peak hour. LOS C would generally be considered acceptable during peak periods.

The Beamish Street / Evaline Street intersection is forecast to operate at LOS C during the PM peak hour in the future base scenario with SM construction traffic (Scenario 2). The addition of TTP buses (Scenario 3) is expected to have an increase in average delay (by about 15 seconds) and is forecast to result in a reduced intersection performance at LOS D. LOS D would generally be considered reasonable during peak periods.

3.7.6 TCS 996 – Beamish Street / Ninth Avenue [Category 4]

Table 57 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 57 TCS 996 - Beamish Street / Ninth Avenue - intersection layout and SIDRA model layout

Intersection performance results were adopted from the previous assessment as detailed in Section 2.2. Table 58 provides a summary of the intersection performance assessment for this intersection.

Table 58 Beamish Street / Ninth Avenue - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak				
Scenario 1: July 2022 (Future base)	1944	0.69	15	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	1960	0.69	16	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1990	0.71	16	LOS B
PM Peak				
Scenario 1: July 2022 (Future base)	2065	0.71	17	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	2081	0.73	17	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	2111	0.79	18	LOS B

The Beamish Street / Ninth Avenue intersection is forecast to operate at LOS B during both the AM and PM peak hours in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS B during both AM and PM peak hours. LOS B would not cause noticeable delays for commuters in the peak hour.

3.8 Belmore Station

Two (2) Category 2 and two (2) Category 4 intersections were assessed in the area surrounding Belmore Station. These intersections are shown in Figure 19 with the category and description of each included in Table 59.



Figure 19: Intersections assessed near Belmore Station

Table 59 Belmore Station assessed intersections

TCS	Site Description
Category 2	
TCS 162	Canterbury Road / Burwood Road
TCS 1329	Burwood Road / Leylands Parade
Category 4	
TCS 80	Canterbury Road / Kingsgrove Road / Sharp Street
TCS 157	Burwood Road / Lakemba Street

3.8.1 TCS 162 - Canterbury Road / Burwood Road [Category 2]

Table 60 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 60 TCS 162 Canterbury Road / Burwood Road – intersection layout and SIDRA model layout

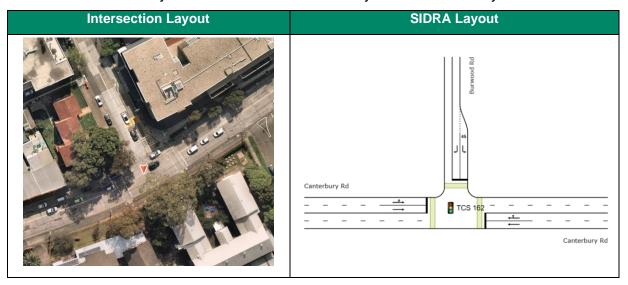


Table 61 provides a summary of the intersection performance assessment for this intersection.

Table 61 Canterbury Road / Burwood Road - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS		
AM Peak (7am to 8am)						
Scenario 1: July 2022 (Future base)	The previous assessment included the addition of 21 TTP buses durin the AM peak hour. The proposed TTP bus volumes for the July 2022					
Scenario 2: July 2022 (Future base + SM Construction traffic)	possession are 36 buses per hour. As the increase in TTP bus volumes are minor (15 buses per hour), the impact of these additional buses on the intersection is expected to be similar compared with the July 2021 CA assessments. As such, it is likely that the intersection will operate at LOS A similar to the previous assessment forecasts for the AM peak hour during all scenarios (Scenarios 1 to 3).					
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)						
PM Peak (5pm to 6pm)						
Scenario 1: July 2022 (Future base)	3160 1.037 21.4 LOS B					
Scenario 2: July 2022 (Future base + SM Construction traffic)	3160 1.037 21.4 LOS					
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	3200	0.889	22.1	LOS B		

The Canterbury Road / Burwood Road intersection is forecast to operate at LOS B during the PM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS B. This aligns with the outcomes from the previous assessment which forecast a similar intersection performance (LOS B) during all scenarios. LOS B would not cause noticeable delays for commuters in the peak hour.

3.8.2 TCS 1329 – Burwood Road / Leylands Parade [Category 2]

Table 62 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 62 TCS 1329 Burwood Road / Leylands Parade – intersection layout and SIDRA model layout

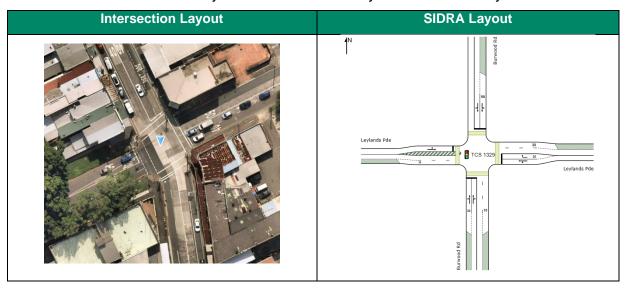
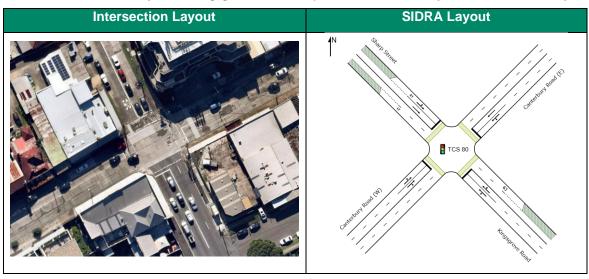


Table 63 provides a summary of the intersection performance assessment for this intersection.

Table 63 Burwood Road / Leylands Parade - intersection assessment summary


	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS		
AM Peak						
Scenario 1: July 2022 (Future base)	The July 2022 forecast traffic volumes (for Scenario 1) are lower to about 350 vehicles than the modelled traffic volumes used in the SPIR for the AM peak hour (for the peak year of construction, which is 2023). The previous assessment forecast the intersection to operate at LOS E during both the future base scenario (Scenar					
Scenario 2: July 2022 (Future base + SM Construction traffic)						
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1) and TTP Scenario (Scenario 3). The proposed TTP bus volumes for the July 2022 possession are 36 buses per hour. The impact of these additional buses on the intersection is expected to be similar or lower compared with the SPIR, as the forecast July 2022 traffic volumes are lower than those forecast in the SPIR. As such, it is likely that the intersection will operate at LOS E or better compared to the previous assessment for the AM peak hour during all scenarios (Scenarios 1 to 3).					
PM Peak (3pm to 4pm)						
Scenario 1: July 2022 (Future base)	1906	1.029	45.6	LOS D		
Scenario 2: July 2022 (Future base + SM Construction traffic)	1942	1	47	LOS D		
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1982	1.014	52.8	LOS D		

The Burwood Road / Leylands Parade intersection is forecast to operate at LOS D during the PM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS D. These outcomes are better than the outcomes from the SPIR which forecast an intersection performance (LOS E) during all scenarios. LOS D would generally be considered reasonable during the peak hour.

3.8.3 TCS 80 - Canterbury Road / Kingsgrove Road / Sharp Street [Category 4]

Table 64 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 64 TCS 80 - Canterbury Road / Kingsgrove Road / Sharp Street - intersection layout and SIDRA model layout

Intersection performance results were adopted from the previous assessment as detailed in Section 2.2. Table 65 provides a summary of the intersection performance assessment for this intersection.

Table 65 Canterbury Road / Kingsgrove Road / Sharp Street - intersection assessment summary

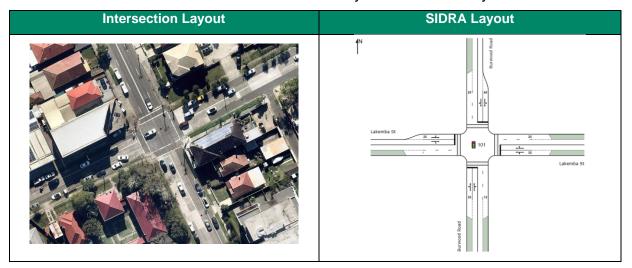
	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	Los
AM Peak				
Scenario 1: July 2022 (Future base)	The future base scenario (Scenario 1) was not assessed in the previous assessment.			
Scenario 2: July 2022 (Future base + SM Construction traffic)	3134	0.924	38.8	LOS D
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	3157	1.002	67.4	LOS E
Scenario 3 with proposed mitigation	3157	0.934	52.5	LOS D

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS	
PM Peak					
Scenario 1: July 2022 (Future base)	The future base scenario (Scenario 1) was not assessed in the previous assessment.				
Scenario 2: July 2022 (Future base + SM Construction traffic)	3304	0.953	36.1	LOS D	
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	3318	0.937	36.2	LOS D	

The Canterbury Road / Kingsgrove Road / Sharp Street intersection is forecast to operate at LOS D during the AM peak hour in the future base scenario with SM construction traffic (Scenario 2). The addition of TTP buses (Scenario 3) is forecast to increase the average delay (30 seconds) and is likely to result degrade intersection performance to LOS E during the AM peak hour. LOS E would generally be considered reasonable during peak periods in a constraint environment.

To improve the intersection performance during AM peak, signal optimisation has been considered as shown in Table 66. By providing more phase times to Phase B (+16 seconds) and reducing phase times for Phase A (-24seconds) and Phase D (-3 seconds), the intersection performance is forecast to improve from LOS E to LOS D. The average delay per vehicle experienced at the intersection is also forecast tto reduce from 78 seconds (before optimisation) to 52.5 seconds (after optimisation). LOS D would be generally considered reasonable during peak periods.

Table 66 Canterbury Road / Kingsgrove Road / Sharp Street - Optimised signal phase time


Phase Time				
Phase	Α	В	С	D
Phase Diagram	Phase A REF	Phase B	Phase C	Phase D
Phase Time Existing (sec)	63	23	24	23
Phase Time Future (sec)	39	39	24	20
Difference (Future - Existing)	-24	16	0	-3

In the PM peak hour, the intersection is forecast to operate at LOS D. The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS D.

3.8.4 TCS 157 – Burwood Road / Lakemba Street [Category 4]

Table 67 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 67 TCS 157 - Burwood Road / Lakemba Street - intersection layout and SIDRA model layout

Intersection performance results were adopted from the previous assessment as detailed in Section 2.2. Table 68 provides a summary of the intersection performance assessment for this intersection.

Table 68 Burwood Road / Lakemba Street - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	Los
AM Peak				
Scenario 1: July 2022 (Future base)	The future base s	scenario (Scenario nent.	1) was not assess	ed in the
Scenario 2: July 2022 (Future base + SM Construction traffic)	1854	0.64	18	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1884	0.73	19	LOS B
PM Peak				
Scenario 1: July 2022 (Future base)	The future base scenario (Scenario 1) was not assessed in the previous assessment.			
Scenario 2: July 2022 (Future base + SM Construction traffic)	2080	0.53	17	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	2115	0.57	18	LOS B

The Burwood Road / Lakemba Street intersection is forecast to operate at LOS B during both the AM and PM peak hours in the future base scenario with SM construction traffic (Scenario 2). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS B during both AM and PM peak hours. LOS B would not cause noticeable delays for commuters in the peak hour.

3.9 Lakemba, Wiley Park and Punchbowl Stations

Three (3) Category 2 intersections were assessed in the area surrounding Lakemba, Wiley Park and Punchbowl Stations. These intersections are shown in Figure 20 with the category and description of each included in Table 69.

Figure 20: Intersections assessed near Lakemba, Wiley Park and Punchbowl Stations

Table 69 Lakemba, Wiley Park and Punchbowl Stations assessed intersections

TCS	Intersection description
Category 2	
TCS 382	King Georges Road / The Boulevarde
TCS 1299	Haldon Street / The Boulevarde, Lakemba
TCS 1744	Punchbowl Road / The Boulevarde / South Terrace

3.9.1 TCS 382 – King Georges Road / The Boulevarde [Category 2]

Table 70 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 70 TCS 382 King Georges Road / The Boulevarde – intersection layout and SIDRA model layout

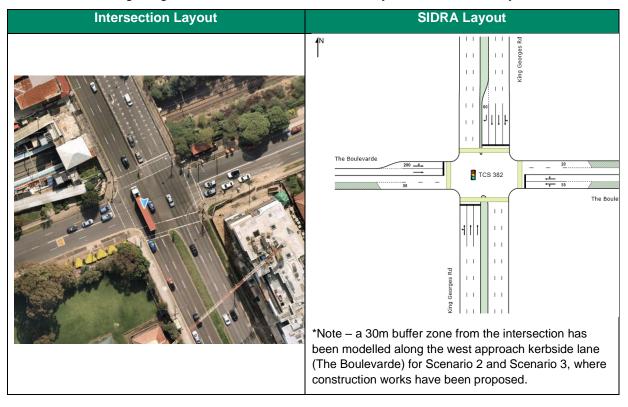


Table 71 provides a summary of the intersection performance assessment for this intersection.

Table 71 King Georges Road / The Boulevarde - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak (6am to 7am)				
Scenario 1: July 2022 (Future base)	5727	0.821	25.3	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	5755	0.84	26.4	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	5842	0.976	49.4	LOS D
PM Peak (5pm to 6pm)				
Scenario 1: July 2022 (Future base)	6425	0.877	33.5	LOS C
Scenario 2: July 2022 (Future base + SM Construction traffic)	6453	0.921	36.7	LOS C
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	6541	0.982	50.3	LOS D

The King Georges Road / The Boulevarde intersection is forecast to operate at LOS B during the AM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is forecast to increase the average delay (less than 25 seconds) and result in a reduced intersection performance (LOS D). These outcomes are better than the outcomes from the previous assessment which forecast an intersection performance (LOS E) during Scenario 3. LOS D would be generally considered reasonable during peak periods.

The King Georges Road / The Boulevarde intersection is forecast to operate at LOS C during the PM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is forecast to increase the average delay (less than 20 seconds) and result in a reduced intersection performance (LOS D). This aligns with the outcomes from the previous assessment which forecast a similar intersection performance (LOS D) during Scenario 3. LOS D would be generally considered reasonable during peak periods.

3.9.2 TCS 1299 – Haldon Street / The Boulevarde [Category 2]

Table 72 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 72 TCS 1299 Haldon Street / The Boulevarde - intersection layout and SIDRA model layout

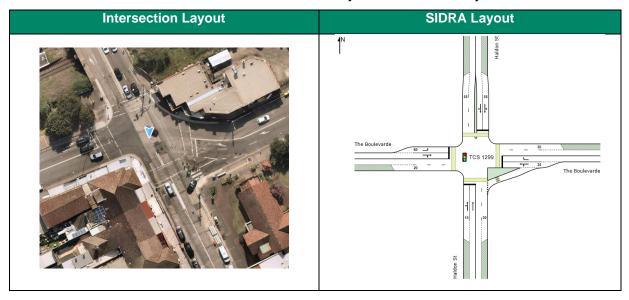


Table 73 provides a summary of the intersection performance assessment for this intersection.

Table 73 Haldon Street / The Boulevarde - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	Los
AM Peak (8am to 9am)				
Scenario 1: July 2022 (Future base)	1614	0.931	39.7	LOS C
Scenario 2: July 2022 (Future base + SM Construction traffic)	1643	0.974	46.6	LOS D
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1731	0.98	47	LOS D

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
PM Peak (3pm to 4pm)				
Scenario 1: July 2022 (Future base)	1772	0.925	32.2	LOS C
Scenario 2: July 2022 (Future base + SM Construction traffic)	1801	0.904	34	LOS C
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1889	1.003	52.1	LOS D

The Haldon Street / The Boulevarde intersection is forecast to operate at LOS C during the AM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is forecast to increase the average delay (less than 15 seconds) and result in a reduced intersection performance (LOS D). These outcomes are better than the outcomes from the previous assessment which forecast an intersection performance (LOS F) during Scenario 3. LOS D would be generally considered acceptable during peak periods.

The Haldon Street / The Boulevarde intersection is forecast to operate at LOS C during the PM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is forecast to increase the average delay (less than 20 seconds) and result in a reduced intersection performance (LOS D). These outcomes are better than the outcomes from the previous assessment which forecast an intersection performance (LOS F) during Scenario 3. LOS D would be generally considered acceptable during peak periods.

3.9.3 TCS 1744 – Punchbowl Road / The Boulevarde / South Terrace [Category 2]

Table 74 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA. This site is modelled as a network.

Table 74 TCS 1744 Punchbowl Road / The Boulevarde / South Terrace – intersection layout and SIDRA model layout

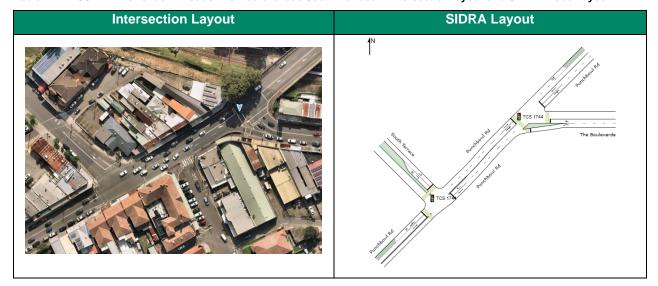


Table 75 is forecast to operate at LOS B during the PM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to result in a minor increase in the average delay and is likely to result in a reduced intersection performance at LOS C. These are aligned with the outcomes from the previous assessment which forecast an intersection performance of LOS C for Scenario 3. LOS C would generally be considered acceptable during peak periods.

Table 76 provides a summary of the intersection performance assessment for this intersection.

Table 75 Punchbowl Road / The Boulevarde - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS	
AM Peak					
Scenario 1: July 2022 (Future base)	The July 2022 forecast traffic volumes (for Scenario 1) are lower than the previously modelled traffic volumes used in the EIS assessment for the AM peak hour (for the peak year of construction, which is 2023). EIS assessment forecast the intersection to operate at LOS C during the future base scenario (Scenario 1) and at LOS D during the				
Scenario 2: July 2022 (Future base + SM Construction traffic) Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	TTP Scenario (Scenario 3). The EIS assessed the intersection performance with the addition of 60 TTP buses during the AM peak hour. The proposed TTP bus volumes for the July 2022 possession are 83 buses per hour. Though the TTP bus volumes have increased (by about 25 buses per hour), the impact of these additional buses on the intersection is expected to be similar with the EIS assessments, as the forecast July 2022 traffic volumes are lower than those forecast in the EIS. As such, it is likely that the intersection will operate at LOS D or better compared to the EIS forecasts for the AM peak hour during all scenarios (Scenarios 1 to 3).				
PM Peak (5pm to 6pm)	PM Peak (5pm to 6pm)				
Scenario 1: July 2022 (Future base)	2707	0.832	25.8	LOS B	
Scenario 2: July 2022 (Future base + SM Construction traffic)	2720	0.852	26.1	LOS B	
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	2808	0.852	28.7	LOS C	

The Punchbowl Road / The Boulevarde intersection is forecast to operate at LOS B during the PM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to result in a minor increase in the average delay and is likely to result in a reduced intersection performance at LOS C. These are aligned with the outcomes from the previous assessment which forecast an intersection performance of LOS C for Scenario 3. LOS C would generally be considered acceptable during peak periods.

Table 76 Punchbowl Road / South Terrace - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS		
AM Peak						
Scenario 1: July 2022 (Future base)	the previously mo for the AM peak h	The July 2022 forecast traffic volumes (for Scenario 1) are lower than the previously modelled traffic volumes used in the EIS assessment for the AM peak hour (for the peak year of construction, which is				
Scenario 2: July 2022 (Future base + SM Construction traffic)	2023). EIS assessment forecast the intersection to operate at LOS F during both the future base scenario (Scenario 1) and TTP Scenario (Scenario 3).					
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	The EIS assessed the intersection performance with the addition of 60 TTP buses during the PM peak hour. The proposed TTP bus volumes for the July 2022 possession are 83 buses per hour. Though the TTP bus volumes have increased (by about 25 buses per hour), the impact of these additional buses on the intersection is expected to be similar with the EIS assessments, as the forecast July 2022 traffic volumes are lower than those forecast in the EIS. As such, it is likely that the intersection will operate at LOS F similar to the EIS forecasts for the PM peak hour during all scenarios (Scenarios 1 to 3).					
PM Peak (5pm to 6pm)			,			
Scenario 1: July 2022 (Future base)	2692	0.974	29.8	LOS C		
Scenario 2: July 2022 (Future base + SM Construction traffic)	2698	0.977	30.4	LOS C		
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	2786	1.012	37.8	LOS C		

The Punchbowl Road / South Terrace intersection is forecast to operate at LOS C during the PM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to increase the average delay (by about 10 seconds) and is likely to result in a similar intersection performance at LOS C during the PM peak hour. This is consistent with the outcomes from the previous assessment which forecast a similar intersection performance (LOS C) during Scenario 1 and Scenario 2. LOS C would be generally considered acceptable during the peak periods.

3.10 Bankstown Station

Two (2) Category 1 and two (2) Category 2 intersections were assessed in the area surrounding Bankstown Station. These intersections are shown in Figure 21 with the category and description of each included in Table 77.

Figure 21: Intersections assessed near Bankstown Station

Table 77 Bankstown Station assessed intersections

TCS	Intersection description
Category 1	
TCS 1203	Chapel Road / Rickard Road
TCS 4408	Chapel Road / French Avenue
Category 2	
TCS 1817	Restwell Street / South Terrace
TCS 4074	Restwell Street / Raymond Street / Greenfield Parade

3.10.1 TCS 1203 – Chapel Road / Rickard Road [Category 1]

Table 78 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 78 TCS 1203 Chapel Road / Rickard Road - intersection layout and SIDRA model layout

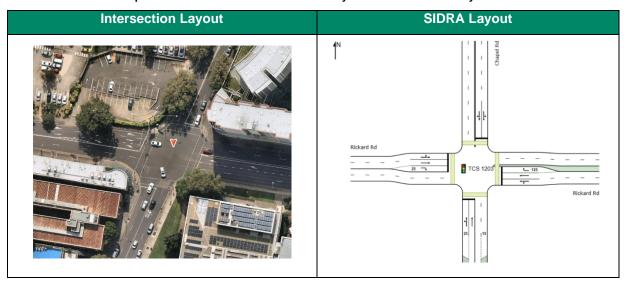


Table 79 provides a summary of the intersection performance assessment for this intersection.

Table 79 Chapel Road / Rickard Road - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak (9am to 10am)				
Scenario 1: July 2022 (Future base)	1817	0.823	19.5	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	1827	0.823	19.6	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1859	0.647	20.3	LOS B
PM Peak (5pm to 6pm)				
Scenario 1: July 2022 (Future base)	2883	0.915	29.6	LOS C
Scenario 2: July 2022 (Future base + SM Construction traffic)	2894	0.915	30.5	LOS C
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	2934	0.891	31.9	LOS C

The Chapel Road / Rickard Road intersection is forecast to operate at LOS B during the AM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and result in a similar intersection performance at LOS B during the AM peak hour. LOS B would not cause noticeable delays for commuters in the peak hour.

The Chapel Road / Rickard Road intersection is forecast to operate at LOS C during the PM peak hour in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and result in a similar intersection performance at LOS C during the AM peak hour. LOS C would be generally considered acceptable during the peak periods.

3.10.2 TCS 4408 – Chapel Road / French Avenue [Category 1]

Table 80 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 80 TCS 4408 Chapel Road / French Avenue – intersection layout and SIDRA model layout

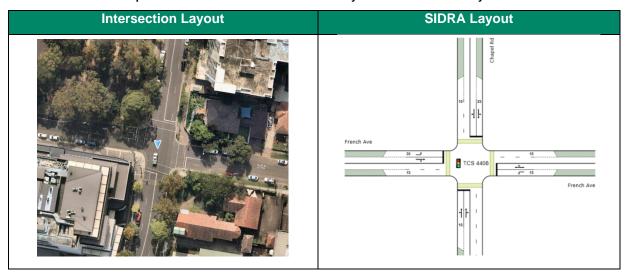


Table 81 provides a summary of the intersection performance assessment for this intersection.

Table 81 Chapel Road / French Avenue - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak (9am to 10am)				
Scenario 1: July 2022 (Future base)	988	0.439	9.7	LOS A
Scenario 2: July 2022 (Future base + SM Construction traffic)	988	0.439	9.7	LOS A
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1020	0.374	9.9	LOS A
PM Peak (5pm to 6pm)				
Scenario 1: July 2022 (Future base)	1704	0.688	11.7	LOS A
Scenario 2: July 2022 (Future base + SM Construction traffic)	1704	0.688	11.7	LOS A
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1744	0.622	11.5	LOS A

The Chapel Road / French Avenue intersection is forecast to operate at LOS A during both the AM and PM peak hours in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and result in a similar intersection performance at LOS A during both AM and PM peak hours. LOS A would not cause noticeable delays for commuters in the peak hour.

3.10.3 TCS 1817 – Restwell Street / South Terrace [Category 2]

Table 82 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 82 TCS 1817 Restwell Street / South Terrace – intersection layout and SIDRA model layout

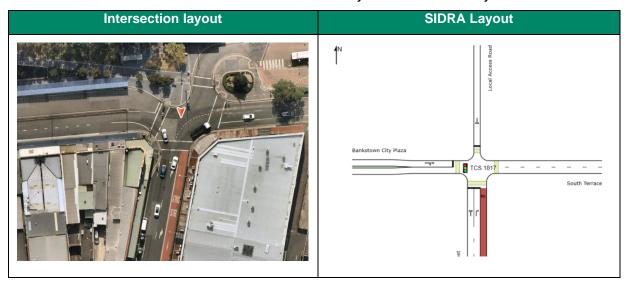


Table 83 provides a summary of the intersection performance assessment for this intersection.

Table 83 Restwell Street / South Terrace - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak (9am to 10am)				
Scenario 1: July 2022 (Future base)	803	0.475	33.4	LOS C
Scenario 2: July 2022 (Future base + SM Construction traffic)	803	0.475	33.4	LOS C
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	864	0.577	38.2	LOS C
PM Peak (4pm to 5pm)				
Scenario 1: July 2022 (Future base)	1097	0.573	28.3	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	1097	0.573	28.3	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1158	0.662	32.5	LOS C

The Restwell Street / South Terrace intersection is forecast to operate at LOS C during in the AM and LOS B in the PM peak hours for future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and result in a similar intersection performance at LOS C during both AM and PM peak hours. LOS C would be generally considered acceptable during the peak periods.

3.10.4 TCS 4074 – Restwell Street / Raymond Street / Greenfield Parade [Category 2]

Table 84 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 84 TCS 4074 Restwell Street / Raymond Street / Greenfield Parade – intersection layout and SIDRA model layout

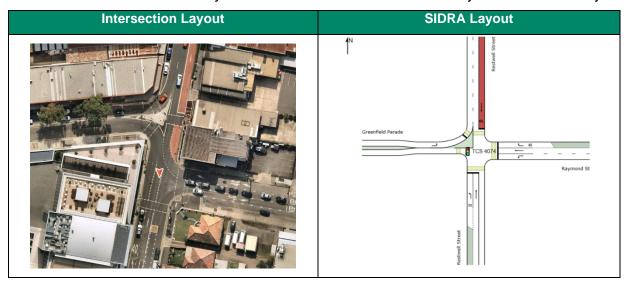


Table 85 provides a summary of the intersection performance assessment for this intersection.

Table 85 Restwell Street / Raymond Street / Greenfield Parade - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak (8am to 9am)				
Scenario 1: July 2022 (Future base)	1384	0.9	27.7	LOS B
Scenario 2: July 2022 (Future base + SM Construction traffic)	1393	0.9	27.7	LOS B
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1406	0.9	27.7	LOS B
PM Peak (5pm to 6pm)				
Scenario 1: July 2022 (Future base)	1888	0.965	44.1	LOS D
Scenario 2: July 2022 (Future base + SM Construction traffic)	1897	0.965	44.1	LOS D
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	1962	0.965	44	LOS D

The Restwell Street / Raymond Street intersection is forecast to operate at LOS B during the AM and LOS D during the PM peak hours in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and result in a similar intersection performance during both AM and PM peak hours. LOS D in the PM peak indicate the intersection is likely to be operating at capacity.

3.11 Yagoona and Berala Stations

Two (2) Category 1 intersections were assessed in the area surrounding Yagoona and Berala Stations. These intersections are shown in Figure 22 with the category and description of each included in Table 86

Figure 22: Intersections assessed near Yagoona and Berala Stations

Table 86 Yagoona and Berala Stations assessed intersections

TCS	Site Description
Category 1	
TCS 61	Hume Highway / Chapel Road / Rookwood Road
TCS 2789	Joseph Street / Georges Avenue

3.11.1 TCS 61 – Hume Highway / Chapel Road / Rookwood Road [Category 1]

Table 87 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 87 TCS 61 Hume Highway / Chapel Road / Rookwood Road – intersection layout and SIDRA model layout

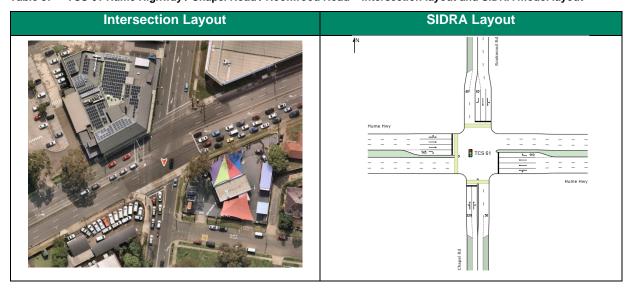


Table 88 provides a summary of the intersection performance assessment for this intersection.

Table 88 Hume Highway / Chapel Road / Rookwood Road - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	Los
AM Peak (7am to 8am)	,			
Scenario 1: July 2022 (Future base)	4151	0.802	30.6	LOS C
Scenario 2: July 2022 (Future base + SM Construction traffic)	4151	0.802	30.6	LOS C
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	4182	0.816	31.9	LOS C
PM Peak (5pm to 6pm)			1	
Scenario 1: July 2022 (Future base)	5516	1.068	80.4	LOS F
Scenario 2: July 2022 (Future base + SM Construction traffic)	5516	1.104	82.2	LOS F
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	5556	1.153	88	LOS F
Scenario 3 with proposed mitigation	5556	1.009	58.5	LOS E

The Hume Highway / Chapel Road / Rookwood Road intersection is forecast to operate at LOS C during the AM peak in the future base scenario (Scenario 1). The addition of bus replacement services (Scenario 3) is expected to have negligible effects to the delay and result in a similar intersection performance at LOS C during both periods. LOS C would generally be considered acceptable during the peak periods.

The Hume Highway / Chapel Road / Rookwood Road intersection is forecast to operate at LOS F during the PM peak in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is forecast to increase the average delay (by about 20 seconds) and is likely to result in a similar intersection performance at LOS F. It is evident from Scenario 1 and Scenario 2 that intersection operates at oversaturated conditions due to the background traffic volumes and existing capacity constraints, even during a July school holiday period, and therefore the impact of TTP buses is considered minor.

To improve the intersection performance during the PM peak, signal optimisation (in line with approved mitigation TC6) has been considered as shown in Table 89. By providing more phase times to Phase A (8 seconds), Phase E (5 seconds) and Phase F (3 seconds) as well as reducing phase time for Phase D (11 seconds), the intersection performance during the PM peak is forecast to improves from LOS F to LOS E as shown in Table 88. The existing phase times are based on average phase times observed at this intersection during a typical weekday in March 2022.

Table 89 TCS 61 Hume Highway / Chapel Road / Rookwood Road - Optimised signal phase time

Phase Time									
Phase	Α	D	E	F					
Phase Diagrams	Phase A REF	Phase D	Phase E	Phase F					
Existing Phase Times (sec) 62		28	33	24					
Proposed Phase Times (sec)	70	17	38	27					
Difference (Proposed – Existing, sec)	8	-11	5	3					

3.11.2 TCS 2789 – Joseph Street / Georges Avenue [Category 1]

Table 90 presents the layout of the intersection as per the latest NearMap imagery and the modelled layout in SIDRA.

Table 90 TCS 2789 Joseph Street / Georges Avenue – intersection layout and SIDRA model layout

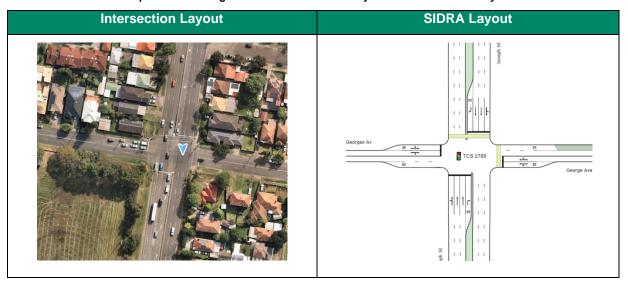


Table 91 provides a summary of the intersection performance assessment for this intersection.

Table 91 Joseph Street / Georges Avenue - intersection assessment summary

	Volume (veh/hr)	Degree of Saturation	Average delay (s/veh)	LOS
AM Peak (8am to 9am)				
Scenario 1: July 2022 (Future base)	4960	0.87	29.3	LOS C
Scenario 2: July 2022 (Future base + SM Construction traffic)	4960	0.87	29.3	LOS C
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	4992	0.874	29.4	LOS C
PM Peak (5pm to 6pm)				
Scenario 1: July 2022 (Future base)	5058	0.862	31.2	LOS C
Scenario 2: July 2022 (Future base + SM Construction traffic)	5058	0.862	31.2	LOS C
Scenario 3: July 2022 (Future base + SM Construction traffic + TTP)	5098	0.875	32.7	LOS C

The Joseph Street / Georges Avenue intersection (Scenario 1) is modelled to operate at LOS C during both the AM and PM peak period. The addition of bus replacement services (Scenario 3) is expected to have negligible effects to the delay and result in a similar intersection performance at LOS C during both periods. LOS C would generally be considered acceptable during the peak periods.

The Joseph Street / Georges Avenue intersection is forecast to operate at LOS C during both the AM and PM peak hours in the future base scenario (Scenario 1). The addition of TTP buses (Scenario 3) is expected to have negligible effects to the average delay and is likely to result in a similar intersection performance at LOS C during both AM and PM peak hours. LOS C would generally be considered acceptable during the peak periods.

4.0 Mitigation measures

This section discusses:

- the revised environmental mitigation measures from the Sydney Metro City and Southwest Sydenham to Bankstown Upgrade –Submissions Report (Sydney Metro, 2018)
- additional recommendations for this assessment.

4.1 Revised environmental mitigation measures

Table 92 provides the full list of approved revised environmental mitigation measures (that are relevant to transport) from the *Sydney Metro City and Southwest – Sydenham to Bankstown Upgrade – Submissions Report* (Sydney Metro, 2018). These measures relate to design / pre-construction, construction and operation stages of the project. The measures relevant for this consistency assessment are highlighted in grey, with a column at the end indicating if a specific measure is relevant for this Consistency Assessment.

Revised mitigation measure TC6 is most relevant to this assessment. This requires further consideration of the need for intersection modifications to be undertaken, to improve intersection performance at locations most affected by the addition of construction heavy vehicles and rail replacement buses. The specific recommendations arising from this assessment in accordance with TC6 to improve intersection performance are provided in Section 4.2.

The transport related revised environmental mitigation measures listed in Table 92, together with the additional recommendations arising from this assessment (see Section 4.2), are considered appropriate to manage the impacts associated with the proposed operation of bus replacement services during the July 2022 school holiday period. No changes to the transport related revised environmental mitigation measures are considered necessary.

The measures are broadly grouped according to the main stage of implementation. However, it is noted that the implementation of some measures may occur across several stages.

The location/s applicable to each mitigation measure are identified by using the unique identifiers as follows:

- All Project as a whole
- BW Bridge works
- AS All Stations
- MA Marrickville Station
- DU Dulwich Hill Station
- HP Hurlstone Park
- CB Canterbury Station
- CP Campsie Station
- BE Belmore Station
- LA Lakemba Station
- WP Wiley Park Station
- PB Punchbowl Station
- BA Bankstown Station
- SS Substations

Table 92 Revised environmental mitigation measures

	Relevant Relevant							
ID	Impact	Mitigation measure	location (s)	for this CA				
Design	n / pre-construction							
TC 1	Temporary transport arrangements	Guided by the Temporary Transport Strategy, detailed temporary transport plan/s would be developed prior to construction to manage the movement of people along the T3 Bankstown Line during possession periods. The plans would be developed in consultation with key Stakeholders (including Transport for NSW, Sydney Coordination Office (now Customer Journey Planning), Roads and Maritime Services (now Sydney Roads), Sydney Trains, local councils, emergency services, and bus operators), and would address the requirements specified by the Temporary Transport Strategy. The development of each plan would consider, as a minimum: A review of the road network constraints along any proposed rail replacement bus route Further traffic analysis of key intersections used by rail replacement buses Potential impacts to local road networks affected by rail passengers diverting to cars to reach their destinations The design of temporary facilities at bus Stop locations in consultation with the relevant road authority Expected changes to parking demand at other Stations, displacement of existing parking, and any upgrades that may be required.	AS	Yes				
TC 2		Sydney Metro would consult with Transport for NSW, Roads and Maritime Services, the State Transit Authority, the Inner West and Canterbury-Bankstown councils, and bus operators, to identify opportunities to minimise impacts to bus layovers and existing bus Stops during operation of rail replacement buses.	AS	Yes				
TC 3		The impacts on the surrounding road network of lane closures resulting from bridge works across the rail corridor would be assessed in detail, to identify the suite of management measures to be implemented for each closure required. This would be undertaken in consultation	BW					

ID	Impact	Mitigation measure	Relevant location (s)	Relevant for this CA
		with Transport for NSW, Roads and Maritime Services, the Sydney Coordination Office, the Inner West and Canterbury-Bankstown councils, emergency services, and relevant bus operators. Planning for partial bridge closures would consider bus rerouting and timetabling, with the intention of minimising impacts to bus customers and bus operators.		
TC 4	Doubling imposts during	Opportunities to reduce the loss of existing on- and off-street car parking (including the amount of spaces reduced and the time associated with this reduction) would be reviewed during detailed design and construction planning.	AS	Yes
TC 5	Parking impacts during construction	Where parking spaces are lost or access is impeded, particularly for extended periods, alternative parking would be provided wherever feasible and reasonable. This would include consideration of other privately owned (or vacant) land within close proximity to affected Stations.	AS	
TC 6	Impacts of intersection performance	Further consideration of the need for intersection modifications would be undertaken, to improve intersection performance at locations most affected by the addition of construction heavy vehicles and rail replacement buses. This would be undertaken in consultation with Transport for NSW, Roads and Maritime Services, the Sydney Coordination Office, and the relevant road authority. The improvements considered would include: Modification to the existing traffic signal phasing Lane priority changes Changing lane designations (line markings and signage) Kerbside changes (such as removing on Street parking or implementing no Standing zones at peak times to increase lane capacity) Physical geometric changes (such as minor kerb cut-backs to enable large vehicles to safely move through intersections)	All	Yes

ID	Impact	Mitigation measure	Relevant location (s)	Relevant for this CA
		Restricting turning movements where traffic demand is low.		
TC 7	Changes to cyclist facilities during construction	Where existing cycle facilities (e.g. bike parking) would be temporarily unavailable at a Station, suitable replacement facilities would be provided while the facility is unavailable.	AS	
TO 1	Parking impacts during operation	Further consideration of car parking management at Stations would be undertaken in consultation with Roads and Maritime Services, the Sydney Coordination Office, and the Inner West and Canterbury-Bankstown councils, to minimise adverse impacts of operation on parking and other kerbside use in local Streets.	AS	
TO 2	Consideration of cross corridor connections	Sydney Metro, in consultation with Canterbury-Bankstown Council, would investigate the feasibility of the provision of a cross-corridor connection between Bankstown and Punchbowl Stations. Should a cross-corridor connection be deemed feasible, Sydney Metro would work with Canterbury-Bankstown Council and the Department of Planning and Environment to safeguard its future delivery.	All	

ID	Impact	Mitigation measure	Relevant location (s)	Relevant for this CA
Const	ruction			
TC 8	Management of traffic transport and access	A construction traffic management plan would be prepared and implemented prior to construction. The plan would be prepared in accordance with the Construction Environmental Management Framework, and would detail, as a minimum: • How traffic would be managed when construction works are being carried out • The activities proposed and their impact on the road network and on road users • How these impacts would be addressed. The plan would be prepared in consultation with the Traffic and Transport Liaison Group and would be approved by the relevant authority before construction commences.	All	Yes
TC 9		Modification of existing bus Stops, or implementation of new Stops and alterations to service patterns, would be carried out by Sydney Metro in consultation with Transport for NSW, Sydney Coordination Office, Roads and Maritime Services, the Inner West and Canterbury-Bankstown councils, and bus operators.	AS	Yes
TC 10	Changes to public transport services and alternative transport arrangements	Sydney Metro would undertake an extensive community awareness and information campaign before changes to public transport services are implemented. This would include a range of communication activities such as: Information at Stations Wayfinding signage Clearly marked bus Stop locations Letter box drops Web based information and transport 'app' where changes to travel are found in a single place Information via 131 500 Advertising in local papers Email information bulletins.	AS	Yes

ID	Impact			Relevant for this CA	
TC 11	Impacts on special events	Consideration of special events would be undertaken as part of construction work programming. For special events that require specific traffic and pedestrian management, measures would be developed and implemented in consultation with Transport for NSW, Sydney Coordination Office, Roads and Maritime Services, the Inner West and Canterbury-Bankstown councils, and the organisers of the event.	All	Yes	
TC12	Impacts of construction compounds and work sites	Vehicle access to and from construction sites would be managed to ensure pedestrian, cyclist, and motorist safety. Depending on the location, this may require manual supervision, barrier placement, temporary traffic signals, modifications to existing traffic signals, or police assistance.	All		
TC13	Construction vehicles	Construction vehicles (including contractor staff vehicles) would be managed to: • Minimise parking or queuing on public roads • Minimise use of residential streets to gain access to work sites or compounds • Minimise vehicle movements near schools, particularly during school start and finish times.	All		
TC14	Signage	Directional signage and line marking would be used to direct and guide drivers, pedestrians, and other road users past construction compounds and work sites, and on the surrounding road network. This may be supplemented by variable message signs to advise drivers of potential delays, traffic diversions, speed restrictions, or alternate routes.	All		
TC15	Construction parking impacts	Construction sites would be managed to minimise construction worker parking on surrounding Streets. A worker car parking Strategy would be developed in consultation with the relevant local council to identify measures to reduce the impact on the availability of on-street and off-street parking. The Strategy would identify potential mitigation measures including alternative parking locations. The Strategy would encourage contractor Staff to:	All		

ID	Impact	Mitigation measure	Relevant location (s)	Relevant for this CA
TC16	Traffic incidents	In the event of a traffic related incident, co-ordination would be carried out with the Sydney Coordination Office and Transport Management Centre's Operations Manager.	All	
TC17	Changes to road, pedestrian and cyclist networks	The community would be notified in advance of proposed road and pedestrian network changes through appropriate forms of community notification.	All	
TC18	Impacts on pedestrian or cyclist paths	A condition survey would be undertaken to confirm changes to routes proposed to be used by pedestrians and/or cyclists are suitable (e.g., suitably paved and lit), with identified modification requirements discussed with the Inner West and/or Canterbury-Bankstown councils and implemented prior to use of the routes.	All	
TC19	Pedestrian, cyclist and motorist safety	Pedestrian, cyclist, and motorist safety in the vicinity of the construction sites would be addressed during construction planning and development of the construction traffic management plan. Measures that may be implemented to assist in multi modal traffic management include:	All	
TC 20		Access for residents, businesses, and community infrastructure would be maintained. Where disruption to access cannot be avoided, consultation would be undertaken with the owners and occupants of affected properties, to confirm their access requirements and to discuss alternatives.	All	
TC 21	Impacts to access	Access to Stations and surrounding properties for emergency vehicles would be provided at all times. Emergency service providers (i.e. police and ambulance) would be consulted throughout construction to ensure they are aware of Station closures, changes to access, including bridge lane closures, and changes to Station or rail corridor access.	All	

ID	Impact	Mitigation measure	Relevant location (s)	Relevant for this CA
TC 22	Co-ordination of cumulative traffic effects	The potential cumulative effects of construction traffic from multiple construction sites within the project would be further considered during development of the construction traffic management plan. Where there is potential for cumulative impacts across the project, these issues would be addressed with the assistance of the Traffic and Transport Liaison Group.	All	
Opera	ation			
TO3	Walking and cycling	Sydney Metro would develop a Walking and Cycling Strategy in consultation with Inner West Council, Canterbury-Bankstown Council and other relevant Stakeholders, which would identify walking and cycling facilities to encourage active transport to the Station precincts.	AS	
TO4	Bus	Sydney Metro would work with Transport for NSW, Sydney Coordination Office, Roads and Maritime Services, the Inner West and Canterbury-Bankstown councils, and bus operators to identify improvements to bus Stops and services.	AS	
TO5	Commuter parking	Sydney Metro would monitor the demand for additional commuter car parking spaces and consider opportunities for, and implications of, meeting this demand between Bankstown and Marrickville Stations.	AS	

4.2 Recommendations for this assessment

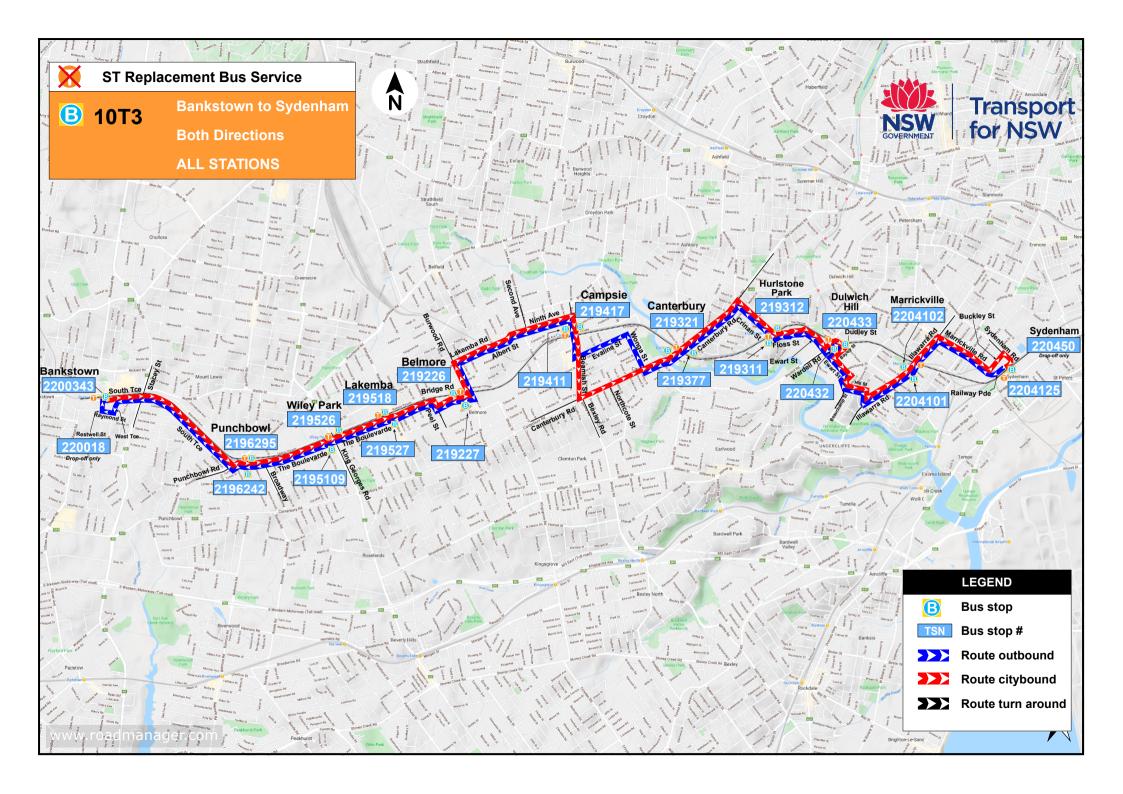
As discussed throughout Chapter 3 (Construction assessment) and in Section 4.1, where there are more significant delays and oversaturated conditions in the future base scenario (Scenario 1) and/or impacts to the intersection performance as a result of addition of TTP buses, recommended signal phasing/timing changes shall be considered in accordance with the revised environmental mitigation measure TC6.

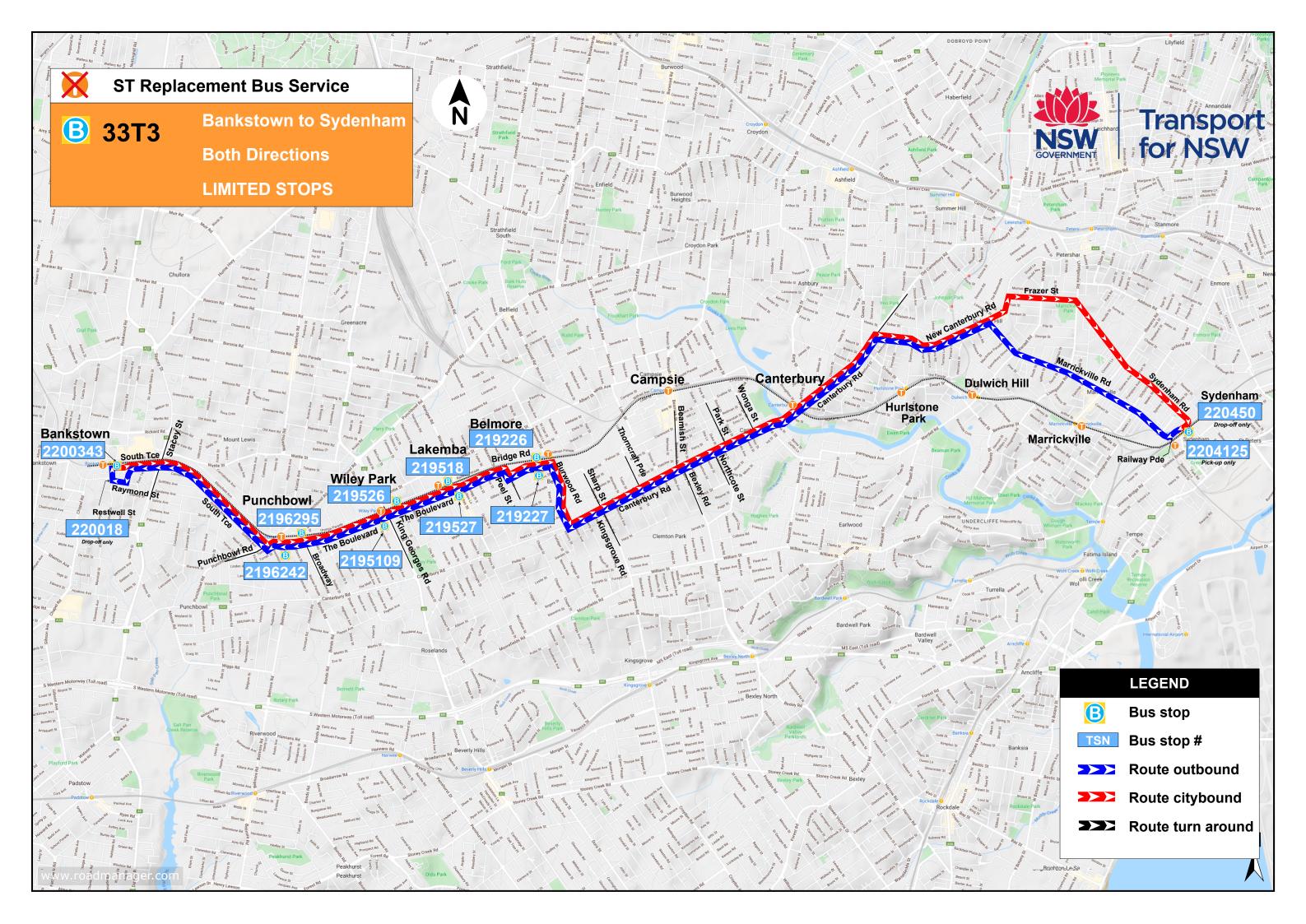
These intersections include:

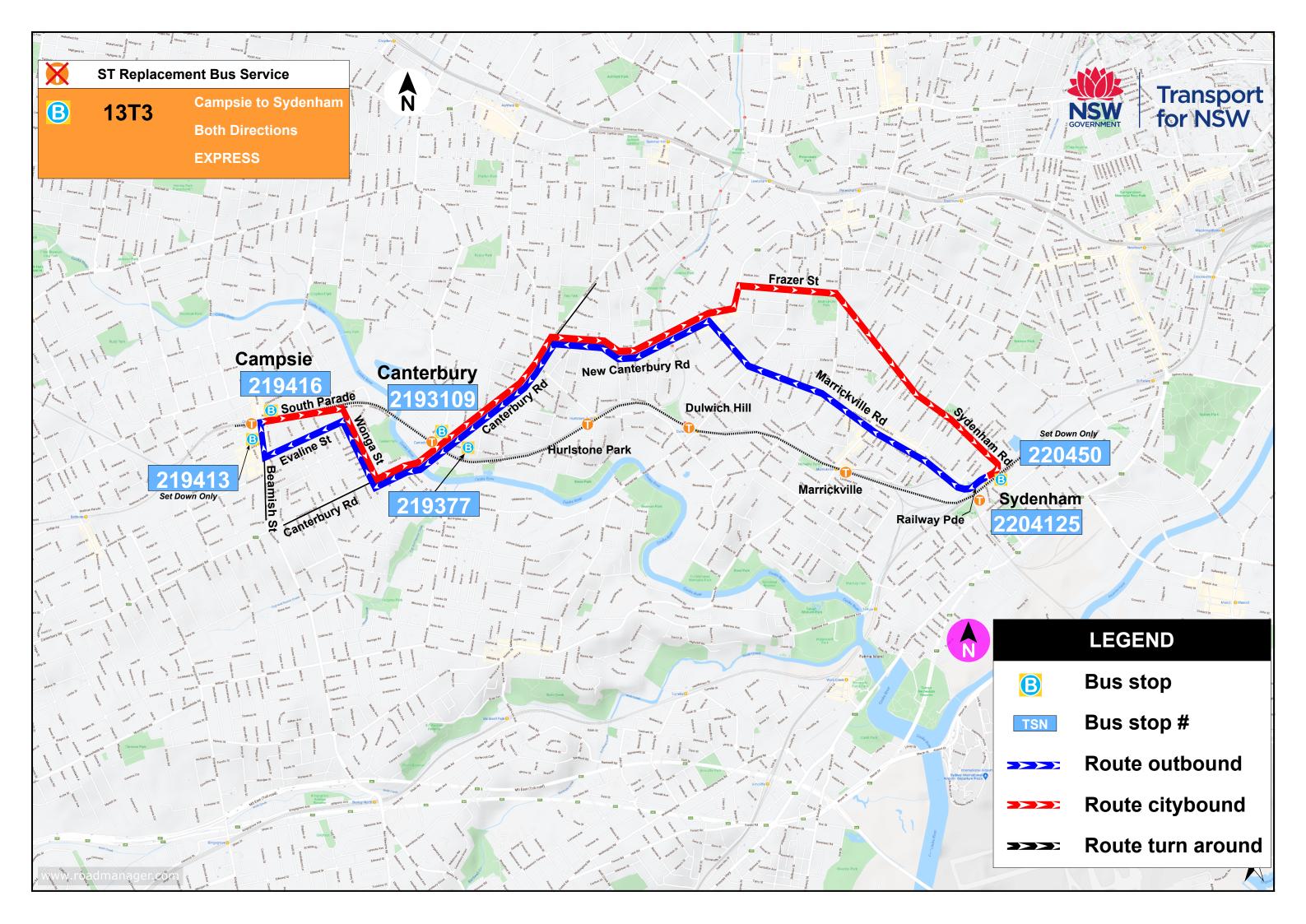
TCS	Intersection description	Recommended signal phasing/timing changes (in line with TC 6)
TCS 41	Sydenham Road / Victoria Road (AM peak)	Reduce phase times for Phase A (-15 seconds), Phase B (-2 seconds) and Phase C (-8 seconds). For detailed information, please refer to Section 3.2.1.
TCS 61	Hume Highway / Chapel Rd / Rookwood Rd (PM Peak)	Provide more phase times to Phase A (8 seconds), Phase E (+5 seconds) and Phase F (+3 seconds) and less phase time to Phase D (-11 seconds). For detailed information, please refer to Section 3.11.1.
TCS 80	Canterbury Road / Kingsgrove Road / Sharp Street (AM peak)	Provide more phase times to Phase B (+16 seconds) and reduce phase times for Phase A (-24 seconds) and Phase D (-3 seconds). For detailed information, please refer to Section 3.8.3.

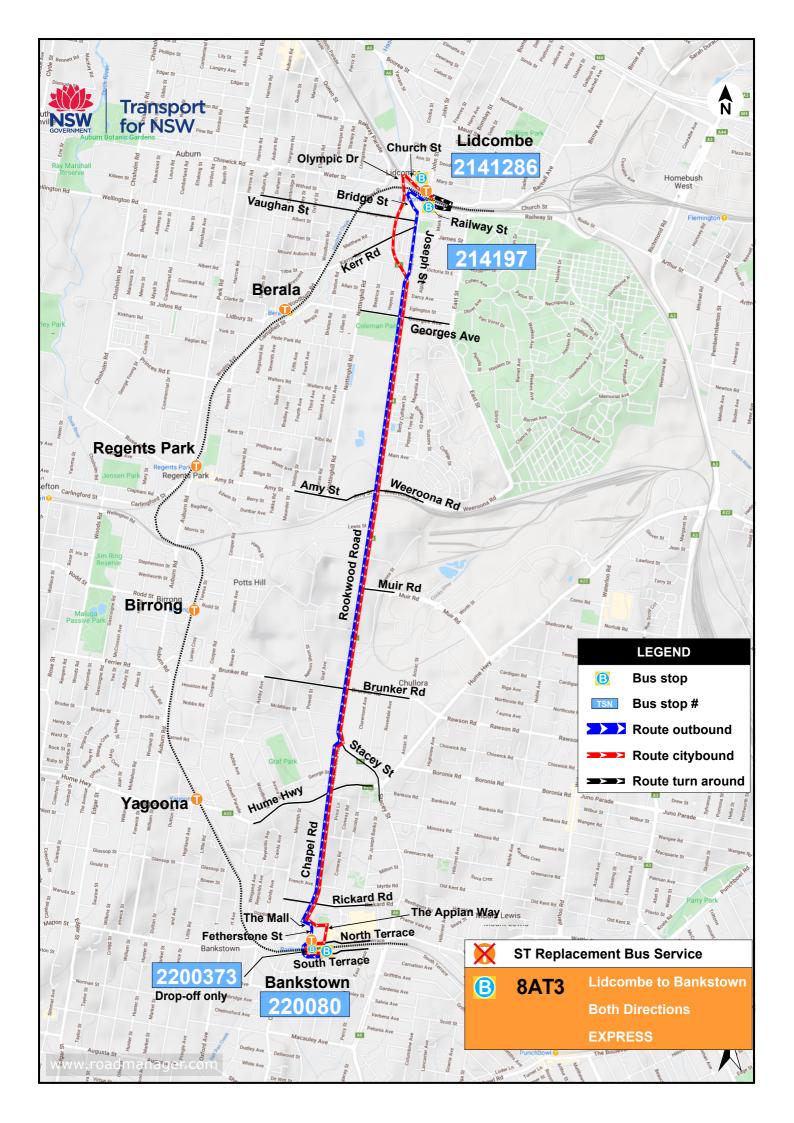
5.0 Summary and conclusions

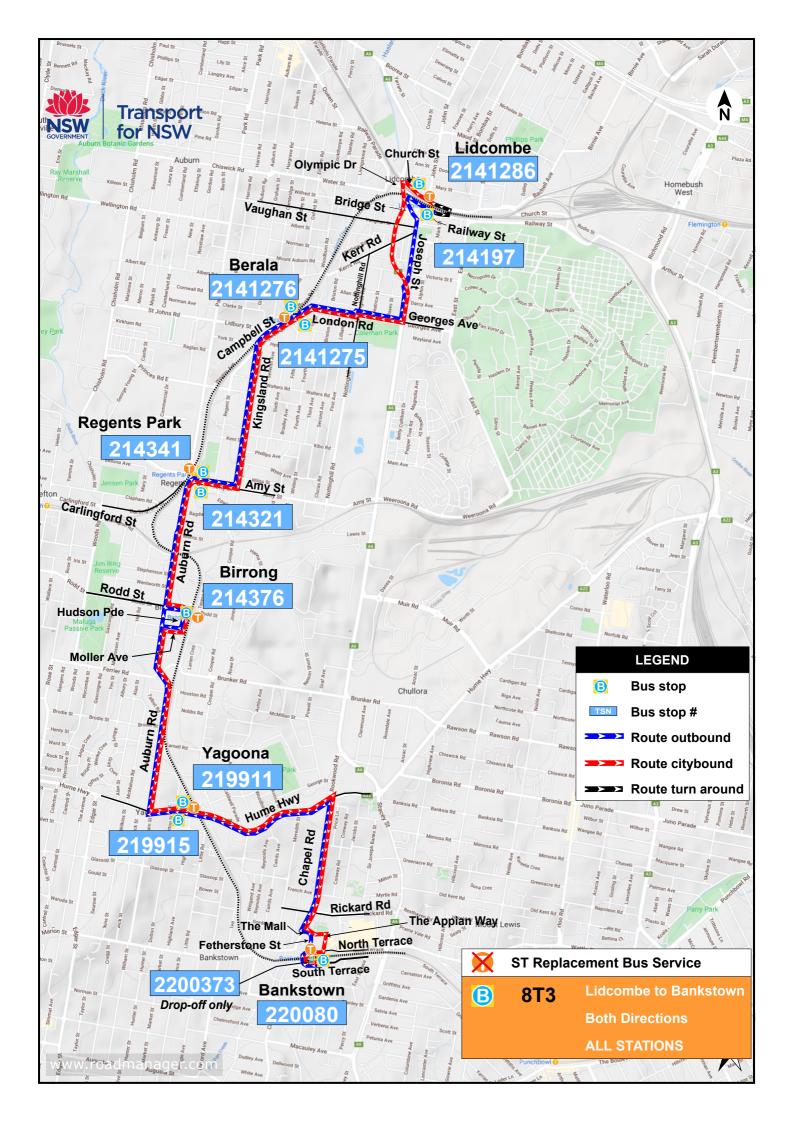
- An updated TTP network and service frequencies are proposed by Sydney Metro over the July 2022 school holiday period – 4 July 2022 to 15 July 2022. During this period, a full line closure would be required for two weeks, and bus replacement services would be provided on five routes to enable construction.
- A preliminary sensitivity analysis was undertaken to identify intersections along the TTP routes that
 are likely to have potential impacts due to the addition of TTP buses and therefore requiring further
 detailed analysis. These intersections were categories under five categories, with Category 1 (13
 intersections) and Category 2 (14 intersections) taken forward for detailed modelling assessments.
 Sensitivity tests were carried out for intersections in Category 4 (7 intersections).
- Based on sensitivity tests, it is evident that for the intersections in Category 4, the modelled volumes from the previous assessments are generally higher or similar compared to the forecast volumes for July 2022 during both AM and PM peak hours, except TCS 80 where there is a marginal increase. These intersections could therefore be reasonably expected to perform similar or better during a July 2022 scenario as a worse-case scenario had already been assessed.
- For modelling intersections in Category 1 and Category 2, as agreed with Sydney Metro, the future baseline traffic volumes for July 2022 (Scenario 1) were estimated based on recent traffic volume data (March 2022) by applying seasonal reduction factors.
- An assessment of traffic volumes and peak period traffic profiles during 2019 (pre-COVID lockdowns) and 2022 (post-COVID lockdowns) was undertaken at three sample intersections spread across the study area to determine if the impacts of COVID-19 are still prevalent. The assessment indicates that traffic volumes and peak period traffic profiles for March 2022 are observed to be similar or slightly lower in comparison to March 2019. Therefore, the use of March 2022 SCATS detector data to forecast July 2022 traffic volumes shall include changes in travel behaviour post COVID-19. As such, no adjustments to traffic data were required to be applied to consider the impacts of COVID-19.
- The assessments indicate the following:
 - Majority of the signalised intersections have only slight increases in delays (less than 20 seconds) and the overall intersection performance is maintained (LOS D or better) as a result of the additional construction traffic and TTP buses during the July 2022 possession period. As the impact on the public is likely to be minimal at this level of delay and the possessions being planned only for a short period (2 weeks) during the July 2022 school holiday period, it would not warrant specific mitigations.
 - Intersections with high existing background traffic volumes and forecast to operate at oversaturated conditions (LOS E or LOS F) in the future base scenario, the impacts of construction traffic and TTP buses were considered minor. These intersections include:
 - TCS 61 Hume Highway / Chapel Road / Rookwood Road (during the PM peak)
 - TCS 80 Canterbury Road / Kingsgrove Road
 - Where there are more significant delays and oversaturated conditions in the future base scenario (Scenario 1) and/or impacts to the intersection performance as a result of addition of TTP buses, recommended signal phasing/timing changes shall be considered in accordance with the revised environmental mitigation measure TC6 (the revised environmental mitigation measures form part of the conditions of approval for the project). Recommended changes for these intersections (TCS 41, TCS 61 and TCS 80) are included in Section 3.11.1.

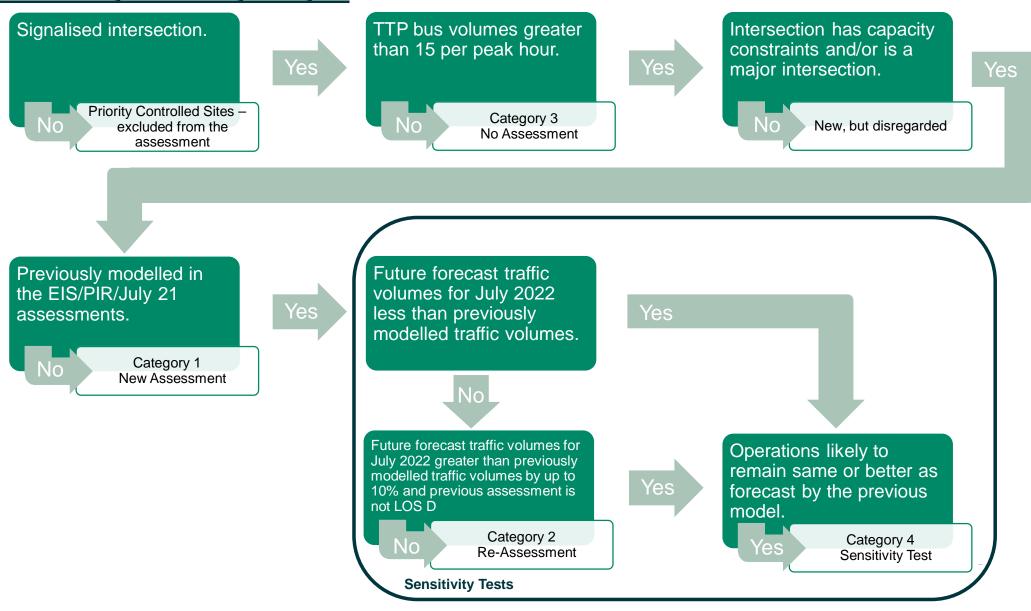

The Temporary Transport Management Plans (TTMPs) that would be developed for the
possession period, guided by the TTS, shall seek to minimise delays during construction and
opportunities to reduce the impacts of construction and TTP shall be considered as part of detailed
planning for these intersections in line with the mitigation measures (highlighted in grey) in
Section 4.0.


Appendix A


TTP Bus Routes - Detailed Maps


Train replacement bus map





Appendix B

Preliminary Sensitivity
Analysis

Preliminary Sensitivity Analysis

Summary of Modelling Assessments

Site	Intersection	Bus_Vol_AM	Bus_Vol_PM	Model_Ref	AM_Model	Model_Category	PM_Model	Remarks
41	TCS 41-SYDENHAM RD/VICTORIA RD	57	15	New	Yes	1	No	AM modelling required.
42	TCS 42-WARDELL RD/FRAZER ST	57	15	New	Yes	1	No	AM modelling required.
61	TCS 61-HUME HWY/CHAPEL RD	30	38	New	Yes	1	Yes	Network may have sufficient capacity. Modelling may not be required. Background volumes to be reviewed first to progress with modelling.
66	TCS 66-MARRICKVILLE RD/WARDELL RD	8	50	H.37	No	3	No	Bus volumes are less than 15 per hour in the AM. No major impacts expected.EIS assessed a worst-case using bus volumes of 83 per hour in the PM peak
67	TCS 67-MARRICKVILLE RD/LIVINGSTONE RD	8	50	New	No	1	Yes	Bus volumes are less than 15 per hour in the AM. No major impacts expected. PM modelling required.
68	TCS 68-MARRICKVILLE RD/VICTORIA RD	55	96	B.18	No	3	No	EIS and PIR assessed a worst-case using bus volumes of 111/113.
78	TCS 78-NEW CANTERBURY RD/CANTERBURY RD	65	65	B.27	No	2	No	EIS Assessed 50 for the AM peak and 51 for PM. The increase is less than 15 buses per hour. A sensitivity analysis is sufficient.
79	TCS 79-CANTERBURY RD/BEXLEY RD	74	50	H.13	No	2	Yes	Jul 21 assessments used 20/15 for AM/PM. Increase in bus volumes are not high and impacts may not be significant. Sensitivity check may be sufficient.
80	TCS 80-CANTERBURY RD/KINGSGROVE RD	36	38	Yes	No	4	Yes	Jul 21 assessments used 21/14 for AM/PM. Increase in bus volumes are not high and impacts may not be significant. Sensitivity check may be sufficient.
81	TCS 81-FRAZER ST/LIVINGSTONE RD	57	15	New	Yes	1	No	AM modelling required. Bus volumes are less than or equal to 15 per hour in the PM. No major impacts expected.
86	TCS 86-NEW CANTERBURY RD/MARRICKVILLE RD	65	65	B.28	No	2	Yes	PIR assessed 51/50 for AM/PM. Bus volumes have increased by 15 buses per hour. Results are likely to be similar to PIR. A sensitivity analysis is sufficient.
96	TCS 96-SYDENHAM RD/ILLAWARRA RD	57	15	New	Yes	3	No	AM modelling required.
157	TCS 157-BURWOOD RD/LAKEMBA ST	47	46	H.20	Yes	4	Yes	EIS/PIR assessed 31 buses per hour. July 21 CA assessed 30/35 buses for AM/PM. Results are likely to be similar as the increase is less than 15 buses per hour. Sensitivity analysis is sufficient.
162	TCS 162-CANTERBURY RD/BURWOOD RD	36	38	H.33	No	2	Yes	July 21 CA assessment 21/14 for AM and PM. Sensitivity assessments maybe sufficient.
382	TCS 382-KING GEORGES RD/THE BOULEVARDE	83	84	B.06	No	2	Yes	PIR assessed 60/60 for AM/PM per hour. Only minor increase in bus volumes during both AM and PM. Sensitivity analysis maybe sufficient.
435	TCS 435-MARRICKVILLE RD/ILLAWARRA RD	55	96	B.17	No	3	No	EIS/PIR assessed over 100 buses per hour for both AM/PM. No modelling.
507	TCS 507-CANTERBURY RD/CHARLOTTE ST	36	38	New	Yes	1	Yes	
569	TCS 569-ILLAWARRA RD/PETERSHAM RD	47	46	H.19	Yes	4	Yes	EIS bus volumes 31/30 and Jul 21 30/35 - The increase in number of buses is about 15. The impacts are likely to be similar. Sensitivity analysis is sufficient.
602	TCS 602-CANTERBURY RD/FORE ST	112	111	New	Yes	1	Yes	AM and PM models required.
738	TCS 738-BEAMISH ST/EVALINE ST	51	68	Yes	Yes	4	Yes	Jul 21 bus volumes 38/53 for AM/PM peaks. The increase in number of buses during both peaks is about 15. Sensitivity analysis may be sufficient.
777	TCS 777-CANTERBURY RD/QUEEN ST	112	111	B.14	Yes	4	Yes	EIS assessed 80/81 for AM/PM.
855	TCS 855-CANTERBURY RD/JEFFREY ST	112	111	H.15	Yes	2	Yes	EIS assessed 81/82 for AM/PM.
902	TCS 902-NEW CANTERBURY RD/CONSTITUTION RD	65	65	J21CA	Yes	3	Yes	July 21 assessments used 50/42 for AM and PM. Sensitivity analysis may be sufficient.
996	TCS 996-BEAMISH ST/NINTH AV	47	46	B.10	Yes	4	Yes	EIS assessed 30/30 and Jul 21 assessed 30/35. Increase is only 15 buses. Results maybe similar. Can be excluded from modelling. Only a sensitivity check is sufficient
1153	TCS 1153-MARRICKVILLE RD/PETERSHAM RD	8	50	New	No	1	Yes	Bus volumes are less than 15 per hour in the AM. No major impacts expected. PM modelling required.

Summary of Modelling Assessments

Site	Intersection	Bus_Vol_AM	Bus_Vol_PM	Model_Ref	AM_Model	Model_Category	PM_Model	Remarks
1167	TCS 1167-CANTERBURY RD/WONGA ST	112	111	B.13	Yes	2	Yes	EIS assessed 80/80 for AM/PM. Impacts maybe similar. AM and PM modelling required.
1203	TCS 1203-CHAPEL RD/RICKARD RD	30	38	New	Yes	1	Yes	Network may have sufficient capacity. Modelling may not be required. Background volumes to be reviewed first to progress with modelling.
1299	TCS 1299-HALDON ST/THE BOULEVARDE	83	84	B.07	Yes	2	Yes	Jul 21 assessed 51/49 for AM/PM. AM and PM models required.
1303	TCS 1303-NEW CANTERBURY RD/DUNTROON ST	65	65	J21CA	Yes	2	Yes	Jul 21 assessed 50/42 for AM/PM. AM may not be required. PM modelling required. Sensitivity analysis may be sufficient.
1315	TCS 1315-ILLAWARRA RD/WARREN RD	47	46	B.16	Yes	4	Yes	EIS assessed 30/31 for AM/PM. Results maybe similar as increase less than 15 buses per hour. Sensitivity analysis is sufficient.
1329	TCS 1329-BURWOOD RD/LEYLANDS PDE	36	38	J21CA	No	2	Yes	Jul 21 assessments used 21/14 for AM/PM. Increase in bus volumes is about 15. PM model maybe required. Sensitivity analysis to check.
1363	TCS 1363-FIFTH AV/NINTH AV	47	46	New	Yes	1	Yes	AM and PM models required.
1413	TCS 1413-WARDELL RD/EWART ST	47	46	B.15	No	3	No	EIS Assessed a worst-case using bus volumes of 61 for the AM and PM peak. No modelling required.
1744	TCS 1744-PUNCHBOWL RD/THE BOULEVARDE	83	84	B.05	No	2	Yes	EIS assessed 60/60 for AM/PM. Results maybe similar. Modelling may not be required. Sensitivity analysis to be completed.
1817	TCS 1817-RESTWELL ST/SOUTH TCE	37	92	B.01	Yes	2	Yes	EIS assessed similar volumes. Impacts are likely to be similar.
2065	TCS 2065-SYDENHAM RD/FARR ST	32	10	New	Yes	3	No	The intersection is a minor intersection and bus movements are through the intersection (without turning). So the impacts are expected to be minor. Excluded from modelling.
2308	TCS 2308-THE BOULEVARDE/ARTHUR ST	83	84	H.22	No	3	Yes	EIS assessed 60/60 for AM/PM. The increase in bus volumes is not high to cause a significant impact. Modelling can be excluded considering the intersection is minor and bus movements are through (without turning).
2450	TCS 2450-SYDENHAM RD/PARK RD	57	15	New	Yes	3	No	Bus volumes are less than or equal to 15 per hour in the PM. No major impacts expected during PM peak. The intersection is a minor intersection and bus movements are through the intersection (without turning). So the impacts are expected to be minor. Excluded from modelling.
2789	TCS 2789-JOSEPH ST/GEORGES AV	30	38	New	Yes	1	Yes	Network may have sufficient capacity. Modelling may not be required. Background volumes to be reviewed first to progress with modelling.
2816	TCS 2816-BEAMISH ST/AMY ST	51	68	H.12	Yes	2	Yes	AM and PM models required.
2995	TCS 2995-CANTERBURY RD/MINTER ST (SW-)	112	111	New	Yes	3	Yes	Although bus volumes are high (one bus every 1.5cycle), the intersection is a minor intersection and the buses go straight through this intersection. The impacts are therefore expected to be minimal. Therefore, excluded from modelling.
3320	TCS 3320-RAILWAY PDE/GLEESON AVE	17	84	H.23	No	3	No	EIS assessed a worst-case scenario with 112/114 for the AM/PM peaks. Impacts are expected to be similar. No modelling required.
3340	TCS 3340-NEW CANTERBURY RD/FRAZER ST	57	15	New	Yes	1	No	AM modelling required.
3431	TCS 3431-BEAMISH ST/SOUTH PDE	51	68	B.12	No	3	No	EIS assessed a worst-case with 81/80 for AM/PM peak. No modelling required.

Summary of Modelling Assessments

Site	Intersection	Bus_Vol_AM	Bus_Vol_PM	Model_Ref	AM_Model	Model_Category	PM_Model	Remarks
4052	TCS 4052-CANTERBURY RD/DUKE ST	74	50	New	No	3	Yes	The bus volumes are not very high and intersection is a minor intersection and bus movements are through the intersection (without turning). So the impacts are expected to be minor. Excluded from modelling.
4074	TCS 4074-RESTWELL ST/RAYMOND ST	13	62	B.02	Yes	2	Yes	AM and PM models required.
4136	TCS 4136-BEAMISH ST/CLISSOLD ST	47	46	B.11	No	3	No	EIS assessed a worst-case scenario with 82/82 for AM/PM peaks. No modelling required.
4297	TCS 4297-SYDENHAM RD/CENTENNIAL ST	57	15	New	No	3		Excluded - minor intersection with buses going straight; assumed minimal impacts
4408	TCS 4408-CHAPEL RD/FRENCH AV	30	38	New	Yes	1	Yes	Minor intersection with buses going straight; assumed minimal impacts - still check if need to be modelled

Site Street_Names	Intersection	Model_Category	Route	Movement	Bus_Vol_AM	Bus_Vol_PM
41 SYDENHAM RD/VICTORIA RD	TCS 41-SYDENHAM RD/VICTORIA RD	1	13T3 to SYDH	Sydenham Rd (W) to Sydenham Rd (E)	25	5
41 SYDENHAM RD/VICTORIA RD	TCS 41-SYDENHAM RD/VICTORIA RD	1	33T3_to_SYDH	Sydenham Rd (W) to Sydenham Rd (E)	32	10
42 WARDELL RD/FRAZER ST	TCS 42-WARDELL RD/FRAZER ST	1	13T3_to_SYDH	Frazer St (W) to Frazer St (E)	25	5
42 WARDELL RD/FRAZER ST	TCS 42-WARDELL RD/FRAZER ST	1	33T3_to_SYDH	Frazer St (W) to Frazer St (E)	32	10
61 HUME HWY/CHAPEL RD	TCS 61-HUME HWY/CHAPEL RD	1	8T3_to_BTWN	Hume Hwy (W) to Chapel Rd	8	12
61 HUME HWY/CHAPEL RD	TCS 61-HUME HWY/CHAPEL RD	1	8T3_to_LDCB	Chapel Rd to Hume Hwy (W)	10	10
61 HUME HWY/CHAPEL RD	TCS 61-HUME HWY/CHAPEL RD	1	8AT3_to_BTWN	Rookwood Rd to Chapel Rd	6	8
61 HUME HWY/CHAPEL RD	TCS 61-HUME HWY/CHAPEL RD	1	8AT3 to LDCB	Chapel Rd to Rookwood Rd	6	8
67 MARRICKVILLE RD/LIVINGSTONE RD	TCS 67-MARRICKVILLE RD/LIVINGSTONE RD	1	13T3_to_CAMP	Marrickville Rd (E) to Marrickville Rd (W)	4	22
67 MARRICKVILLE RD/LIVINGSTONE RD	TCS 67-MARRICKVILLE RD/LIVINGSTONE RD	1	33T3_to_BTWN	Marrickville Rd (E) to Marrickville Rd (W)	4	28
81 FRAZER ST/LIVINGSTONE RD	TCS 81-FRAZER ST/LIVINGSTONE RD	1	13T3_to_SYDH	Frazer St to Sydenham Rd	25	5
81 FRAZER ST/LIVINGSTONE RD	TCS 81-FRAZER ST/LIVINGSTONE RD	1	33T3_to_SYDH	Frazer St to Sydenham Rd	32	10
507 CANTERBURY RD/CHARLOTTE ST	TCS 507-CANTERBURY RD/CHARLOTTE ST	1	33T3_to_BTWN	Canterbury Rd (E) to Canterbury Rd (W)	4	28
507 CANTERBURY RD/CHARLOTTE ST	TCS 507-CANTERBURY RD/CHARLOTTE ST	1	33T3_to_SYDH	Canterbury Rd (W) to Canterbury Rd (E)	32	10
602 CANTERBURY RD/FORE ST	TCS 602-CANTERBURY RD/FORE ST	1	10T3 to BTWN	Canterbury Rd (E) to Canterbury Rd (W)	9	34
602 CANTERBURY RD/FORE ST	TCS 602-CANTERBURY RD/FORE ST	1	10T3 to SYDH	Canterbury Rd (W) to Canterbury Rd (E)	38	12
602 CANTERBURY RD/FORE ST	TCS 602-CANTERBURY RD/FORE ST	1	13T3_to_CAMP	Canterbury Rd (E) to Canterbury Rd (W)	4	22
602 CANTERBURY RD/FORE ST	TCS 602-CANTERBURY RD/FORE ST	1	13T3 to SYDH	Canterbury Rd (W) to Canterbury Rd (E)	25	5
602 CANTERBURY RD/FORE ST	TCS 602-CANTERBURY RD/FORE ST	1	33T3 to BTWN	Canterbury Rd (E) to Canterbury Rd (W)	4	28
602 CANTERBURY RD/FORE ST	TCS 602-CANTERBURY RD/FORE ST	1	33T3_to_SYDH	Canterbury Rd (W) to Canterbury Rd (E)	32	10
1153 MARRICKVILLE RD/PETERSHAM RD	TCS 1153-MARRICKVILLE RD/PETERSHAM RD	1	13T3 to CAMP	Marrickville Rd (E) to Marrickville Rd (W)	4	22
1153 MARRICKVILLE RD/PETERSHAM RD	TCS 1153-MARRICKVILLE RD/PETERSHAM RD	1	33T3_to_BTWN	Marrickville Rd (E) to Marrickville Rd (W)	4	28
1203 CHAPEL RD/RICKARD RD	TCS 1203-CHAPEL RD/RICKARD RD	1	8AT3 to BTWN	Chapel Rd (N) to Chapel Rd (S)	6	8
1203 CHAPEL RD/RICKARD RD	TCS 1203-CHAPEL RD/RICKARD RD	1	8AT3 to LDCB	Chapel Rd (S) to Chapel Rd (N)	6	8
1203 CHAPEL RD/RICKARD RD	TCS 1203-CHAPEL RD/RICKARD RD	1	8T3_to_BTWN	Chapel Rd (N) to Chapel Rd (S)	8	12
1203 CHAPEL RD/RICKARD RD	TCS 1203-CHAPEL RD/RICKARD RD	1	8T3_to_LDCB	Chapel Rd (S) to Chapel Rd (N)	10	10
1363 FIFTH AV/NINTH AV	TCS 1363-FIFTH AV/NINTH AV	1	10T3_to_BTWN	Ninth Ave (E) to Ninth Ave (W)	9	34
1363 FIFTH AV/NINTH AV	TCS 1363-FIFTH AV/NINTH AV	1	10T3 to SYDH	Ninth Ave (W) to Ninth Ave (E)	38	12
2789 JOSEPH ST/GEORGES AV	TCS 2789-JOSEPH ST/GEORGES AV	1	8T3_to_BTWN	Joseph St (N) to Georges Ave (W)	8	12
2789 JOSEPH ST/GEORGES AV	TCS 2789-JOSEPH ST/GEORGES AV	1	8T3 to LDCB	Georges Ave (W) to Joseph St (N)	10	10
2789 JOSEPH ST/GEORGES AV	TCS 2789-JOSEPH ST/GEORGES AV	1	8AT3_to_BTWN	Joseph St (N) to Joseph St (S)	6	8
2789 JOSEPH ST/GEORGES AV	TCS 2789-JOSEPH ST/GEORGES AV	1	8AT3 to LDCB	Joseph St (S) to Joseph St (N)	6	8
3340 NEW CANTERBURY RD/FRAZER ST	TCS 3340-NEW CANTERBURY RD/FRAZER ST	1	13T3_to_SYDH	New Canterbury Rd (S) to Frazer St	25	5
3340 NEW CANTERBURY RD/FRAZER ST	TCS 3340-NEW CANTERBURY RD/FRAZER ST	1	33T3_to_SYDH	New Canterbury Rd (S) to Frazer St	32	10
4408 CHAPEL RD/FRENCH AV	TCS 4408-CHAPEL RD/FRENCH AV	1	8T3 to BTWN	Chapel Rd (N) to Chapel Rd (S)	8	12
4408 CHAPEL RD/FRENCH AV	TCS 4408-CHAPEL RD/FRENCH AV	1	8T3 to LDCB	Chapel Rd (S) to Chapel Rd (N)	10	10
4408 CHAPEL RD/FRENCH AV	TCS 4408-CHAPEL RD/FRENCH AV	1	8AT3 to BTWN	Chapel Rd (N) to Chapel Rd (S)	6	8
4408 CHAPEL RD/FRENCH AV	TCS 4408-CHAPEL RD/FRENCH AV	1	8AT3 to LDCB	Chapel Rd (S) to Chapel Rd (N)	6	8
78 NEW CANTERBURY RD/CANTERBURY RD	TCS 78-NEW CANTERBURY RD/CANTERBURY RD	2	13T3 to CAMP		4	22
78 NEW CANTERBURY RD/CANTERBURY RD	TCS 78-NEW CANTERBURY RD/CANTERBURY RD	2	13T3_to_SYDH		25	5
78 NEW CANTERBURY RD/CANTERBURY RD	TCS 78-NEW CANTERBURY RD/CANTERBURY RD	2	33T3 to BTWN		4	28
78 NEW CANTERBURY RD/CANTERBURY RD	TCS 78-NEW CANTERBURY RD/CANTERBURY RD	2	33T3_to_SYDH		32	10
79 CANTERBURY RD/BEXLEY RD	TCS 79-CANTERBURY RD/BEXLEY RD	2	33T3 to BTWN		4	28
79 CANTERBURY RD/BEXLEY RD	TCS 79-CANTERBURY RD/BEXLEY RD	2	33T3_to_SYDH		32	10
	TCS 86-NEW CANTERBURY RD/MARRICKVILLE RD	2	13T3_to_CAMP	Marrickville Rd to New Canterbury (W)	4	22
86 NEW CANTERBURY RD/MARRICKVILLE RD	TCS 86-NEW CANTERBURY RD/MARRICKVILLE RD	2	13T3_to_SYDH	New Canterbury (W) to New Canterbury (E)	25	5
86 NEW CANTERBURY RD/MARRICKVILLE RD		2	33T3 to BTWN	Marrickville Rd to New Canterbury (W)	4	28
	TCS 86-NEW CANTERBURY RD/MARRICKVILLE RD	2	33T3_to_SYDH	New Canterbury (W) to New Canterbury (E)	32	10
162 CANTERBURY RD/BURWOOD RD	TCS 162-CANTERBURY RD/BURWOOD RD	2	33T3 to BTWN	Canterbury Rd (E) to Burwood Rd	4	28
162 CANTERBURY RD/BURWOOD RD	TCS 162-CANTERBURY RD/BURWOOD RD	2	33T3 to SYDH	Burwood Rd to Canterbury Rd (E)	32	10
382 KING GEORGES RD/THE BOULEVARDE	TCS 382-KING GEORGES RD/THE BOULEVARDE	2	10T3 to BTWN	The Boulevarde (E) to The Boulevarde (W)	9	34
382 KING GEORGES RD/THE BOULEVARDE	TCS 382-KING GEORGES RD/THE BOULEVARDE	2	10T3_to_SYDH	The Boulevarde (W) to The Boulevarde (E)	38	12
382 KING GEORGES RD/THE BOULEVARDE	TCS 382-KING GEORGES RD/THE BOULEVARDE	2	33T3_to_BTWN	The Boulevarde (E) to The Boulevarde (W)	4	28
382 KING GEORGES RD/THE BOULEVARDE	TCS 382-KING GEORGES RD/THE BOULEVARDE	2	33T3_to_SYDH	The Boulevarde (W) to The Boulevarde (E)	32	10
855 CANTERBURY RD/JEFFREY ST	TCS 855-CANTERBURY RD/JEFFREY ST	2	10T3_to_BTWN	Canterbury Rd (E) to Canterbury Rd (W)	9	34
855 CANTERBURY RD/JEFFREY ST	TCS 855-CANTERBURY RD/JEFFREY ST	2	10T3_to_SYDH	Canterbury Rd (W) to Canterbury Rd (E)	38	12
855 CANTERBURY RD/JEFFREY ST	TCS 855-CANTERBURY RD/JEFFREY ST	2	13T3_to_CAMP	Canterbury Rd (W) to Canterbury Rd (W)	4	22
OOO OF WILKDON'T NO/OLITINET OF	100 000 CANTENDON'T NOTOLITALE OF		1010_to_O/tivii	Cantorbury Na (L) to Cantorbury Na (W)	-	

855 CANTERBURY RD/JEFFREY ST	TCS 855-CANTERBURY RD/JEFFREY ST	2	13T3_to_SYDH	Canterbury Rd (W) to Canterbury Rd (E)	25	5
855 CANTERBURY RD/JEFFREY ST	TCS 855-CANTERBURY RD/JEFFREY ST	2	33T3 to BTWN	Canterbury Rd (E) to Canterbury Rd (W)	4	28
	TCS 855-CANTERBURY RD/JEFFREY ST	2	33T3 to SYDH	Canterbury Rd (W) to Canterbury Rd (E)	32	10
	TCS 1167-CANTERBURY RD/WONGA ST	2	10T3_to_BTWN	Canterbury Rd (E) to Wonga St	9	34
	TCS 1167-CANTERBURY RD/WONGA ST	2	10T3 to SYDH	Canterbury Rd (W) to Canterbury Rd (E)	38	12
	TCS 1167-CANTERBURY RD/WONGA ST	2	13T3_to_CAMP	Canterbury Rd (E) to Wonga St	4	22
	TCS 1167-CANTERBURY RD/WONGA ST	2	13T3_to_SYDH	Wonga St to Canterbury Rd (E)	25	5
	TCS 1167-CANTERBURY RD/WONGA ST	2	33T3 to BTWN	Canterbury Rd (E) to Canterbury Rd (W)	4	28
	TCS 1167-CANTERBURY RD/WONGA ST	2	33T3_to_SYDH	Canterbury Rd (W) to Canterbury Rd (W) Canterbury Rd (W) to Canterbury Rd (E)	32	10
	TCS 1299-HALDON ST/THE BOULEVARDE	2	10T3 to BTWN	The Boulevarde (E) to The Boulevarde (W)	9	34
	TCS 1299-HALDON ST/THE BOULEVARDE	2	10T3_to_SYDH	The Boulevarde (W) to The Boulevarde (E)	38	12
	TCS 1299-HALDON ST/THE BOULEVARDE	2	33T3_to_BTWN	The Boulevarde (W) to The Boulevarde (E) The Boulevarde (E) to The Boulevarde (W)	4	28
	TCS 1299-HALDON ST/THE BOULEVARDE	2			32	10
		2	33T3_to_SYDH	The Boulevarde (W) to The Boulevarde (E)	32 4	22
	TCS 1303-NEW CANTERBURY RD/DUNTROON ST		13T3_to_CAMP	New Canterbury (E) to New Canterbury (W)		
	TCS 1303-NEW CANTERBURY RD/DUNTROON ST	2	13T3_to_SYDH	New Canterbury (W) to New Canterbury (E)	25 4	5
	TCS 1303-NEW CANTERBURY RD/DUNTROON ST	2	33T3_to_BTWN	New Canterbury (E) to New Canterbury (W)		28
	TCS 1303-NEW CANTERBURY RD/DUNTROON ST	2	33T3_to_SYDH	New Canterbury (W) to New Canterbury (E)	32	10
	TCS 1329-BURWOOD RD/LEYLANDS PDE	2	33T3_to_BTWN	Burwood Rd (S) to Burwood Rd (N)	4	28
	TCS 1329-BURWOOD RD/LEYLANDS PDE	2	33T3_to_SYDH	Burwood Rd (N) to Burwood Rd (S)	32	10
	TCS 1744-PUNCHBOWL RD/THE BOULEVARDE	2	10T3_to_BTWN	The Boulevarde to Punchbowl (SW)	9	34
	TCS 1744-PUNCHBOWL RD/THE BOULEVARDE	2	10T3_to_SYDH	Punchbowl (SW) to The Boulevarde	38	12
	TCS 1744-PUNCHBOWL RD/THE BOULEVARDE	2	33T3_to_BTWN	The Boulevarde to Punchbowl (SW)	4	28
1744 PUNCHBOWL RD/THE BOULEVARDE	TCS 1744-PUNCHBOWL RD/THE BOULEVARDE	2	33T3_to_SYDH	Punchbowl (SW) to The Boulevarde	32	10
1817 RESTWELL ST/SOUTH TCE	TCS 1817-RESTWELL ST/SOUTH TCE	2	10T3_to_BTWN	Restwell St to South Terrace (E)	9	34
1817 RESTWELL ST/SOUTH TCE	TCS 1817-RESTWELL ST/SOUTH TCE	2	10T3_to_SYDH	Bus Depot (N) to South Terrace (E)	38	12
1817 RESTWELL ST/SOUTH TCE	TCS 1817-RESTWELL ST/SOUTH TCE	2	33T3_to_BTWN	Restwell St to South Terrace (E)	4	28
1817 RESTWELL ST/SOUTH TCE	TCS 1817-RESTWELL ST/SOUTH TCE	2	33T3_to_SYDH	Bus Depot (N) to South Terrace (E)	32	10
1817 RESTWELL ST/SOUTH TCE	TCS 1817-RESTWELL ST/SOUTH TCE	2	8T3_to_BTWN	South Terrace (W) to South Terrace (E)	8	12
1817 RESTWELL ST/SOUTH TCE	TCS 1817-RESTWELL ST/SOUTH TCE	2	8T3_to_LDCB	Bus Depot (N) to South Terrace (W)	10	10
1817 RESTWELL ST/SOUTH TCE	TCS 1817-RESTWELL ST/SOUTH TCE	2	8AT3_to_LDCB	Bus Depot (N) to South Terrace (W)	6	8
2816 BEAMISH ST/AMY ST	TCS 2816-BEAMISH ST/AMY ST	2	10T3 to BTWN	Beamish St (S) to Beamish St (N)	9	34
2816 BEAMISH ST/AMY ST	TCS 2816-BEAMISH ST/AMY ST	2	10T3 to SYDH	Beamish St (N) to Beamish St (S)	38	12
	TCS 2816-BEAMISH ST/AMY ST	2	13T3 to CAMP	Beamish St (S) to Beamish St (N)	4	22
	TCS 4074-RESTWELL ST/RAYMOND ST	2	10T3_to_BTWN	Raymond St to Restwell St (N)	9	34
	TCS 4074-RESTWELL ST/RAYMOND ST	2	33T3_to_BTWN	Raymond St to Restwell St (N)	4	28
	TCS 66-MARRICKVILLE RD/WARDELL RD	3	13T3 to CAMP	(1)	4	22
	TCS 66-MARRICKVILLE RD/WARDELL RD	3	33T3 to BTWN		4	28
	TCS 68-MARRICKVILLE RD/VICTORIA RD	3	10T3 to BTWN		9	34
	TCS 68-MARRICKVILLE RD/VICTORIA RD	3	10T3 to SYDH		38	12
	TCS 68-MARRICKVILLE RD/VICTORIA RD	3	13T3_to_CAMP		4	22
	TCS 68-MARRICKVILLE RD/VICTORIA RD	3	33T3_to_BTWN		4	28
	TCS 96-SYDENHAM RD/ILLAWARRA RD	3	13T3_to_SYDH		25	5
	TCS 96-SYDENHAM RD/ILLAWARRA RD	3	33T3_to_SYDH		32	10
	TCS 435-MARRICKVILLE RD/ILLAWARRA RD	3	10T3 to BTWN		9	34
	TCS 435-MARRICKVILLE RD/ILLAWARRA RD	3	10T3_to_SYDH		38	12
		3			30	22
	TCS 435-MARRICKVILLE RD/ILLAWARRA RD	•	13T3_to_CAMP		4	28
	TCS 435-MARRICKVILLE RD/ILLAWARRA RD	3	33T3_to_BTWN		4	
	TCS 902-NEW CANTERBURY RD/CONSTITUTION RD	3	13T3_to_CAMP		4	22
	TCS 902-NEW CANTERBURY RD/CONSTITUTION RD	3	13T3_to_SYDH		25	5
	TCS 902-NEW CANTERBURY RD/CONSTITUTION RD	3	33T3_to_BTWN		4	28
	TCS 902-NEW CANTERBURY RD/CONSTITUTION RD	3	33T3_to_SYDH		32	10
	TCS 1413-WARDELL RD/EWART ST	3	10T3_to_BTWN		9	34
	TCS 1413-WARDELL RD/EWART ST	3	10T3_to_SYDH		38	12
	TCS 2065-SYDENHAM RD/FARR ST	3	13T3_to_SYDH		25	5
	TCS 2065-SYDENHAM RD/FARR ST	3	33T3_to_SYDH		32	10
	TCS 2308-THE BOULEVARDE/ARTHUR ST	3	10T3_to_BTWN		9	34
111	TCS 2308-THE BOULEVARDE/ARTHUR ST	3	10T3_to_SYDH		38	12
2308 THE BOULEVARDE/ARTHUR ST	TCS 2308-THE BOULEVARDE/ARTHUR ST	3	33T3 to BTWN		4	28

2308 THE BOULEVARDE/ARTHUR ST	TCS 2308-THE BOULEVARDE/ARTHUR ST	3	33T3_to_SYDH		32	10
2450 SYDENHAM RD/PARK RD	TCS 2450-SYDENHAM RD/PARK RD	3	13T3_to_SYDH		25	5
2450 SYDENHAM RD/PARK RD	TCS 2450-SYDENHAM RD/PARK RD	3	33T3_to_SYDH		32	10
2995 CANTERBURY RD/MINTER ST (SW-)	TCS 2995-CANTERBURY RD/MINTER ST (SW-)	3	10T3_to_BTWN		9	34
2995 CANTERBURY RD/MINTER ST (SW-)	TCS 2995-CANTERBURY RD/MINTER ST (SW-)	3	10T3_to_SYDH		38	12
2995 CANTERBURY RD/MINTER ST (SW-)	TCS 2995-CANTERBURY RD/MINTER ST (SW-)	3	13T3_to_CAMP		4	22
2995 CANTERBURY RD/MINTER ST (SW-)	TCS 2995-CANTERBURY RD/MINTER ST (SW-)	3	13T3_to_SYDH		25	5
2995 CANTERBURY RD/MINTER ST (SW-)	TCS 2995-CANTERBURY RD/MINTER ST (SW-)	3	33T3_to_BTWN		4	28
2995 CANTERBURY RD/MINTER ST (SW-)	TCS 2995-CANTERBURY RD/MINTER ST (SW-)	3	33T3_to_SYDH		32	10
3320 RAILWAY PDE/GLEESON AVE	TCS 3320-RAILWAY PDE/GLEESON AVE	3	10T3_to_BTWN		9	34
3320 RAILWAY PDE/GLEESON AVE	TCS 3320-RAILWAY PDE/GLEESON AVE	3	10T3_to_SYDH		38	12
3320 RAILWAY PDE/GLEESON AVE	TCS 3320-RAILWAY PDE/GLEESON AVE	3	13T3_to_CAMP		4	22
3320 RAILWAY PDE/GLEESON AVE	TCS 3320-RAILWAY PDE/GLEESON AVE	3	13T3_to_SYDH		25	5
3320 RAILWAY PDE/GLEESON AVE	TCS 3320-RAILWAY PDE/GLEESON AVE	3	33T3_to_BTWN		4	28
3320 RAILWAY PDE/GLEESON AVE	TCS 3320-RAILWAY PDE/GLEESON AVE	3	33T3_to_SYDH		32	10
3431 BEAMISH ST/SOUTH PDE	TCS 3431-BEAMISH ST/SOUTH PDE	3	10T3_to_BTWN		9	34
3431 BEAMISH ST/SOUTH PDE	TCS 3431-BEAMISH ST/SOUTH PDE	3	10T3_to_SYDH		38	12
3431 BEAMISH ST/SOUTH PDE	TCS 3431-BEAMISH ST/SOUTH PDE	3	13T3_to_CAMP		4	22
3431 BEAMISH ST/SOUTH PDE	TCS 3431-BEAMISH ST/SOUTH PDE	3	13T3_to_SYDH		25	5
4052 CANTERBURY RD/DUKE ST	TCS 4052-CANTERBURY RD/DUKE ST	3	33T3_to_BTWN		4	28
4052 CANTERBURY RD/DUKE ST	TCS 4052-CANTERBURY RD/DUKE ST	3	33T3_to_SYDH		32	10
4136 BEAMISH ST/CLISSOLD ST	TCS 4136-BEAMISH ST/CLISSOLD ST	3	10T3_to_BTWN		9	34
4136 BEAMISH ST/CLISSOLD ST	TCS 4136-BEAMISH ST/CLISSOLD ST	3	10T3_to_SYDH		38	12
80 CANTERBURY RD/KINGSGROVE RD	TCS 80-CANTERBURY RD/KINGSGROVE RD	4	33T3_to_BTWN		4	28
80 CANTERBURY RD/KINGSGROVE RD	TCS 80-CANTERBURY RD/KINGSGROVE RD	4	33T3_to_SYDH		32	10
157 BURWOOD RD/LAKEMBA ST	TCS 157-BURWOOD RD/LAKEMBA ST	4	10T3_to_BTWN		9	34
157 BURWOOD RD/LAKEMBA ST	TCS 157-BURWOOD RD/LAKEMBA ST	4	10T3_to_SYDH		38	12
569 ILLAWARRA RD/PETERSHAM RD	TCS 569-ILLAWARRA RD/PETERSHAM RD	4	10T3_to_BTWN		9	34
569 ILLAWARRA RD/PETERSHAM RD	TCS 569-ILLAWARRA RD/PETERSHAM RD	4	10T3_to_SYDH		38	12
738 BEAMISH ST/EVALINE ST	TCS 738-BEAMISH ST/EVALINE ST	4	10T3_to_BTWN		9	34
738 BEAMISH ST/EVALINE ST	TCS 738-BEAMISH ST/EVALINE ST	4	10T3_to_SYDH		38	12
738 BEAMISH ST/EVALINE ST	TCS 738-BEAMISH ST/EVALINE ST	4	13T3_to_CAMP		4	22
777 CANTERBURY RD/QUEEN ST	TCS 777-CANTERBURY RD/QUEEN ST	4	10T3_to_BTWN	Crinan St to Canterbury Rd (W)	9	34
777 CANTERBURY RD/QUEEN ST	TCS 777-CANTERBURY RD/QUEEN ST	4	10T3_to_SYDH	Canterbury Rd (W) to Crinan St	38	12
777 CANTERBURY RD/QUEEN ST	TCS 777-CANTERBURY RD/QUEEN ST	4	13T3_to_CAMP	Canterbury Rd (E) to Canterbury Rd (W)	4	22
777 CANTERBURY RD/QUEEN ST	TCS 777-CANTERBURY RD/QUEEN ST	4	13T3_to_SYDH	Canterbury Rd (W) to Canterbury Rd (E)	25	5
777 CANTERBURY RD/QUEEN ST	TCS 777-CANTERBURY RD/QUEEN ST	4	33T3_to_BTWN	Canterbury Rd (E) to Canterbury Rd (W)	4	28
777 CANTERBURY RD/QUEEN ST	TCS 777-CANTERBURY RD/QUEEN ST	4	33T3_to_SYDH	Canterbury Rd (W) to Canterbury Rd (E)	32	10
996 BEAMISH ST/NINTH AV	TCS 996-BEAMISH ST/NINTH AV	4	10T3_to_BTWN		9	34
996 BEAMISH ST/NINTH AV	TCS 996-BEAMISH ST/NINTH AV	4	10T3_to_SYDH		38	12
1315 ILLAWARRA RD/WARREN RD	TCS 1315-ILLAWARRA RD/WARREN RD	4	10T3_to_BTWN		9	34
1315 ILLAWARRA RD/WARREN RD	TCS 1315-ILLAWARRA RD/WARREN RD	4	10T3_to_SYDH		38	12

Intersection-Route Matrix

Intersection-Route Matrix	Routes										
											Number of
											routes (both
Intersection	10T3_to_BTWN	10T3 to SYDH	13T3 to CAMP	13T3 to SYDH	33T3 to BTWN	33T3 to SYDH	8AT3 to BTWN	8AT3 to LDCB	8T3 to BTWN	8T3 to LDCB	
TCS 1153-MARRICKVILLE RD/PETERSHAM RD			1		1						2
TCS 1167-CANTERBURY RD/WONGA ST	1	1	1	1	1	1					6
TCS 1203-CHAPEL RD/RICKARD RD							1	1	1	1	4
TCS 1299-HALDON ST/THE BOULEVARDE	1	1			1	1					4
TCS 1303-NEW CANTERBURY RD/DUNTROON ST			1	1	1	1					4
TCS 1315-ILLAWARRA RD/WARREN RD	1	1									2
TCS 1363-FIFTH AV/NINTH AV	1	1									2
TCS 1413-WARDELL RD/EWART ST	1	1									2
TCS 157-BURWOOD RD/LAKEMBA ST	1	1									2
TCS 162-CANTERBURY RD/BURWOOD RD					1	1					2
TCS 1744-PUNCHBOWL RD/THE BOULEVARDE	1	1			1	1					4
TCS 1817-RESTWELL ST/SOUTH TCE	1	1			1	1		1	1	1	7
TCS 2065-SYDENHAM RD/FARR ST				1		1					2
TCS 2308-THE BOULEVARDE/ARTHUR ST	1	1			1	1					4
TCS 2450-SYDENHAM RD/PARK RD				1		1					2
TCS 2789-JOSEPH ST/GEORGES AV							1	1	1	1	4
TCS 2816-BEAMISH ST/AMY ST	1	1	1								3
TCS 2995-CANTERBURY RD/MINTER ST (SW-)	1	1	1	1	1	1					6
TCS 3320-RAILWAY PDE/GLEESON AVE	1	1	1	1	1	1					6
TCS 3340-NEW CANTERBURY RD/FRAZER ST	•			1	•	1					2
TCS 3431-BEAMISH ST/SOUTH PDE	1	1	1	1		•					4
TCS 382-KING GEORGES RD/THE BOULEVARDE	1	1			1	1					4
TCS 4052-CANTERBURY RD/DUKE ST		•			1	1					2
TCS 4074-RESTWELL ST/RAYMOND ST	1				1	•					2
TCS 4136-BEAMISH ST/CLISSOLD ST	1	1			•						2
TCS 41-SYDENHAM RD/VICTORIA RD		•		1		1					2
TCS 42-WARDELL RD/FRAZER ST				1		1					2
TCS 435-MARRICKVILLE RD/ILLAWARRA RD	1	1	1		1	•					4
TCS 507-CANTERBURY RD/CHARLOTTE ST					1	1					2
TCS 569-ILLAWARRA RD/PETERSHAM RD	1	1			•	•					2
TCS 602-CANTERBURY RD/FORE ST	1	1	1	1	1	1					6
TCS 61-HUME HWY/CHAPEL RD					•		1	1	1	1	4
TCS 66-MARRICKVILLE RD/WARDELL RD			1		1		•	•	•	•	2
TCS 67-MARRICKVILLE RD/LIVINGSTONE RD			1		1						2
TCS 68-MARRICKVILLE RD/VICTORIA RD	1	1	1		1						4
TCS 738-BEAMISH ST/EVALINE ST	1	1	1								3
TCS 777-CANTERBURY RD/QUEEN ST	1	1	1	1	1	1					6
TCS 78-NEW CANTERBURY RD/CANTERBURY RD			1	1	1	1					4
TCS 79-CANTERBURY RD/BEXLEY RD					1	1					2
TCS 80-CANTERBURY RD/KINGSGROVE RD					1	1					2
TCS 81-FRAZER ST/LIVINGSTONE RD				1		1					2
TCS 855-CANTERBURY RD/JEFFREY ST	4	1	1	1	1	1					6
TCS 855-CANTERBURY RD/JEFFREY ST			1	1	1	1					4
			1	1	1	1					4
TCS 902-NEW CANTERBURY RD/CONSTITUTION RD TCS 96-SYDENHAM RD/ILLAWARRA RD				1		1					2
TCS 996-BEAMISH ST/NINTH AV	1	1				-					2
	1	1			4	1					
TCS 1329-BURWOOD RD/LEYLANDS PDE					1	1			4	4	2
TCS 4408-CHAPEL RD/FRENCH AV								T	1		4

TTP Bus Frequency (AM Peak)	Routes										TTP Bus
Intersection	10T3_to_BTWN	10T3_to_SYDH	13T3_to_CAMP	13T3_to_SYDH	33T3_to_BTWN	33T3_to_SYDH	8AT3_to_BTWN	8AT3_to_LDCB	8T3_to_BTWN	8T3_to_LDCB	
41				25		32					57
42				25		32					57
61							6	6	8	10	30
66			4		4						8
67			4		4						8
68	9	38	4		4						55
78			4	25	4	32					65
79		38			4	32					74
80					4	32					36
81				25		32					57
86			4	25	4	32					65
96	0	00		25		32					57
157	9	38			4	00					47
162 225					4	32	6	6			36 12
382	0	20			4	22	6	0			
435	9	38	4		4	32					83 55
436	9	30	4		4				8	10	18
507					4	32			0	10	36
569	9	38			7	32					47
602	9	38	4	25	4	32					112
738	9	38	4	20		02					51
777	9	38	4	25	4	32					112
855	9	38	4	25	4	32					112
902			4	25	4	32					65
935							6	6	8	10	30
996	9	38									47
1135									8	10	18
1153			4		4						8
1159							6	6			12
1167	9	38	4	25	4	32					112
1203							6	6	8	10	30
1299	9	38			4	32					83
1303			4	25	4	32					65
1315	9	38									47
1329					4	32					36
1363	9	38									47
1413	9	38									47
1451							6	6			12

Intersection	10T3_to_BTWN	10T3_to_SYDH	13T3_to_CAMP	13T3_to_SYDH	33T3_to_BTWN	33T3_to_SYDH	8AT3_to_BTWN	8AT3_to_LDCB	8T3_to_BTWN	8T3_to_LDCB	TTP Bus Volume - AM Peak
1542									8	10	18
1545									8	10	18
1725							6	6			12
1744	9	38			4	32					83
1771									8	10	18
1817	9				4			6	8	10	37
2192									8	10	18
2206							6	6	8	10	30
2308	9	38			4	32					83
2450				25		32					57
2468							6		8		14
2789							6	6	8	10	30
2800								6		10	16
2816	9	38	4								51
2995	9	38	4	25	4	32					112
3222							6		8		14
3320	9		4		4						17
3340				25		32					57
3431	9	38	4								51
3492							6	6			12
3509								6			6
4052		38			4	32					74
4074	9				4						13
4127							6	6	8	10	30
4136	9	38									47
4276							6	6			12
4297				25		32					57
4325							6	6			12
4408							6	6	8	10	30
2065						32					32

TTP Bus Frequency (PM peak)	Routes										
Intersection	10T3_to_BTWN	10T3_to_SYDH	13T3_to_CAMP	13T3_to_SYDH	33T3_to_BTWN	33T3_to_SYDH	8AT3_to_BTWN	8AT3_to_LDCB	8T3_to_BTWN	8T3_to_LDCB	TTP Bus Volume - PM Peak
41				5		10					15
42				5		10					15
61							8	8	12	10	38
66			22		28						50
67			22		28						50
68	34	12	22		28						96
78			22	5	28	10					65
79		12			28	10					50
80					28	10					38
81				5		10					15
86			22	5	28	10					65
96				5		10					15
157	34	12									46
162					28	10					38
225							8	8			16
382	34	12			28	10					84
435	34	12	22		28						96
436									12	10	22
507					28	10					38
569	34	12									46
602	34	12	22	5	28	10					111
738	34	12	22								68
777	34	12	22	5	28	10					111
855	34	12	22	5	28	10					111
902			22	5	28	10					65
935							8	8	12	10	38
996	34	12									46
1135									12	10	22
1153			22		28						50
1159							8	8			16
1167	34	12	22	5	28	10					111
1203							8	8	12	10	38
1299	34	12			28	10					84
1303			22	5	28	10					65
1315	34	12									46
1329					28	10					38
1363	34	12									46
1413	34	12									46

Intersection	10T3_to_BTWN	10T3_to_SYDH	13T3_to_CAMP	13T3_to_SYDH	33T3_to_BTWN	33T3_to_SYDH	8AT3_to_BTWN	8AT3_to_LDCB	8T3_to_BTWN	8T3_to_LDCB	TTP Bus Volume - PM Peak
1451							8	8			16
1542									12	10	22
1545									12	10	22
1725							8	8			16
1744	34	12			28	10					84
1771									12	10	22
1817	34				28			8	12	10	92
2192									12	10	22
2206							8	8	12	10	38
2308	34	12			28	10					84
2450				5		10					15
2468							8		12		20
2789							8	8	12	10	38
2800								8		10	18
2816	34	12	22								68
2995	34	12	22	5	28	10					111
3222							8		12		20
3320	34		22		28						84
3340				5		10					15
3431	34	12	22								68
3492							8	8			16
3509								8			8
4052		12			28	10					50
4074	34				28						62
4127							8	8	12	10	38
4136	34	12									46
4276							8	8			16
4297				5		10					15
4325							8	8			16
4408							8	8	12	10	38
2065						10					10

Appendix C

Intersection Assessment Volumes

Table 1 TCS 41 Sydenham Road / Victoria Road

AM Model Volume Inpu	ıts											
Hour		South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	353	45	17	695	173	100	193	66	38	506	28
Heavies	0	32	3	3	36	10	7	19	14	6	43	6
Construction Forecast	0	0	0	0	14	0	0	0	0	0	14	0
TTP Buses	0	0	0	0	57	0	0	0	0	0	0	0
Total	0	385	48	20	802	183	107	212	80	44	563	34
PM Model Volume Inpu	ıts											
Hour		South Leg			West Leg			North Leg			East Leg	
Houl	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	268	77	20	610	102	215	398	74	68	710	45
Heavies	0	22	0	2	11	0	6	26	0	0	20	0
Construction Forecast	0	0	0	0	14	0	0	0	0	0	14	0
TTP Buses	0	0	0	0	15	0	0	0	0	0	0	0
Total	0	290	77	22	650	102	221	424	74	68	744	45

Table 2 TCS 42 – Wardell Road / Frazer Street

AM Model Volume Inpu	ıts											
Hour		South Leg			West Leg			North Leg			East Leg	
Houl	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	118	276	34	31	379	4	2	117	41	43	139	52
Heavies	4	2	2	1	8	0	0	3	4	1	8	1
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	57	0	0	0	0	0	0	0
Total	122	278	36	32	444	4	2	120	45	44	147	53
PM Model Volume Inpu	ıts											
Hour		South Leg			West Leg			North Leg			East Leg	
Hour	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	64	168	25	36	279	8	11	305	45	106	400	171
Heavies	0	0	0	0	4	0	0	2	0	1	2	1
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	15	0	0	0	0	0	0	0
Total	64	168	25	36	298	8	11	307	45	107	402	172

Table 3 TCS 61 – Hume Highway / Chapel Road / Rookwood Road

AM Model Volume Inputs												
Hour		South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	146	115	98	1779	161	51	179	32	29	1007	78
Heavies	6	5	5	9	132	18	3	12	2	1	67	8
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	6	10	8	0	0	0	6	0	0	0	0
Total	6	157	130	115	1911	179	54	197	34	30	1074	86
PM Model Volume Inputs												
Hour		South Leg			West Leg			North Leg			East Leg	
Hour	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	322	234	194	1580	191	107	477	20	52	1750	103
Heavies	11	9	10	9	30	22	5	10	0	0	92	12
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	8	10	12	0	0	0	8	0	0	0	0
Total	11	339	254	215	1610	213	112	495	20	52	1842	115

Table 4 TCS 67 – Marrickville Road / Livingstone Road

AM Model Volume Inputs												
Hour	South Leg			West Leg			North Leg			East Leg		
	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	46	272	18	41	504	50	18	106	60	120	228	72
Heavies	1	7	0	2	20	2	2	4	1	2	15	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	0	0	0	0	0	0	8	0
Total	47	279	18	43	524	52	20	110	61	122	251	72
PM Model Volume Inputs	PM Model Volume Inputs											
Hour	South Leg			West Leg			North Leg			East Leg		
	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	48	161	42	20	353	53	50	257	106	107	551	149
Heavies	0	3	0	0	10	0	0	3	0	2	17	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	0	0	0	0	0	0	50	0
Total	48	164	42	20	363	53	50	260	106	109	618	149

Table 5 TCS 78 – New Canterbury Road / Canterbury Road

dule 5 TCS 78 – New Canterbury Roda / Canterbury Roda												
AM Model Volume Inputs												
Hour	South Leg			West Leg			North Leg			East Leg		
	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	820	656	30	9	318	14	0	384	24	17	258	371
Heavies	65	28	1	1	3	2	0	20	2	2	5	50
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	65	0	0	0	0	0	0	0	0	0	0	65
Total	950	684	31	10	321	16	0	404	26	19	263	486
PM Model Volume Inputs												
Hour	South Leg			West Leg				North Leg		East Leg		
	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	473	547	23	20	264	9	0	649	37	30	468	672
Heavies	18	11	0	0	3	0	0	10	0	2	7	31
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	65	0	0	0	0	0	0	0	0	0	0	65
Total	556	558	23	20	267	9	0	659	37	32	475	768

Table 6 TCS 79 – Canterbury Road / Bexley Road

AM Model Volume Inputs												
Hour	South Leg			West Leg			North Leg			East Leg		
	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	378	556	76	203	1081	53	76	358	46	0	597	225
Heavies	13	26	8	14	69	10	13	38	1	0	49	15
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	32	0	0	0	38	0	4	0
Total	391	582	84	217	1182	63	89	396	85	0	650	240
PM Model Volume Inputs	PM Model Volume Inputs											
Hour	South Leg			West Leg			North Leg			East Leg		
Πυαί	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	358	386	85	186	975	88	128	321	40	0	969	168
Heavies	5	15	0	6	14	7	10	14	5	0	46	4
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	10	0	0	0	12	0	28	0
Total	363	401	85	192	999	95	138	335	57	0	1043	172

Table 7 TCS 81 – Livingstone Road / Sydenham Road / Frazer Street

AM Model Volume Inputs												
Hour	;	South Leg			West Leg			North Leg			East Leg	
Tioui	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	28	471	22	0	209	124	59	202	323	271	148	16
Heavies	0	10	2	0	4	4	0	7	37	31	7	1
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	57	0	0	0	0	0	0	0
Total	28	481	24	0	270	128	59	209	360	302	155	17
PM Model Volume Inputs												
Hour		South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	34	221	59	0	165	87	184	411	311	299	479	50
Heavies	2	5	1	0	2	1	2	18	16	19	3	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	15	0	0	0	0	0	0	0
Total	36	226	60	0	182	88	186	429	327	318	482	50

Table 8 TCS 86 – New Canterbury Road / Marrickville Road / Dulwich Street

Table 8 TCS 86 – New Canterbu	ry Roaa /	VIVIATTICKVIIIE	e Roaa ,	Dulwicr	Street							
AM Model Volume Inputs												
Hour	;	South Leg			West Leg			North Leg			East Leg	
Houl	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	39	39	111	357	910	13	2	56	21	0	353	73
Heavies	1	0	15	11	49	0	1	4	4	0	31	5
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	8	0	57	0	0	0	0	0	0	0
Total	40	39	134	368	1016	13	3	60	25	0	384	78
PM Model Volume Inputs												
Hour		South Leg			West Leg			North Leg			East Leg	
Houl	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	54	64	322	206	582	5	3	53	17	0	921	75
Heavies	0	0	14	5	13	1	0	7	0	0	22	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	50	0	15	0	0	0	0	0	0	0
Total	54	64	386	211	610	6	3	60	17	0	943	75

Table 9 TCS 162 – Canterbury Road / Burwood Road

AM Model Volume Inputs												
Hour		South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	0	0	0	1329	66	56	0	111	187	660	0
Heavies	0	0	0	0	91	4	9	0	23	16	52	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	0	0	0	0	32	4	0	0
Total	0	0	0	0	1420	70	65	0	166	207	712	0
PM Model Volume Inputs												
Hour		South Leg			West Leg			North Leg			East Leg	
Houl	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	0	0	0	1231	64	149	0	82	201	1164	0
Heavies	0	0	0	0	25	0	4	0	9	12	65	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	0	0	0	0	10	28	0	0
Total	0	0	0	0	1256	64	153	0	101	241	1229	0

Table 10 TCS 382 – King Georges Road / The Boulevarde

AM Model Volume Inputs												
Hour	;	South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	2298	17	0	134	127	37	2057	104	113	99	8
Heavies	0	202	2	0	2	3	1	232	2	1	1	1
Construction Forecast	0	8	8	0	0	8	0	0	0	0	0	2
TTP Buses	0	0	0	0	70	0	0	0	0	0	13	0
Total	0	2508	27	0	206	138	38	2289	106	114	113	11
PM Model Volume Inputs												
Hour	:	South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	2248	30	0	144	183	92	2421	164	199	337	27
Heavies	0	159	0	0	1	0	1	92	1	1	4	0
Construction Forecast	0	8	8	0	0	8	0	0	0	0	0	2
TTP Buses	0	0	0	0	22	0	0	0	0	0	62	0
Total	0	2415	38	0	167	191	93	2513	165	200	403	29

Table 11 TCS 507 – Canterbury Road / Charlotte Street / Thorncraft Parade

AM Model Volume Inputs		idi io eta o ei a	et y Title	or mor alger								
		South Leg			West Leg			North Leg			East Leg	
Hour	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	33	239	15	0	1222	151	48	236	62	135	748	25
Heavies	2	6	1	0	77	2	1	2	0	0	43	1
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	32	0	0	0	0	0	4	0
Total	35	35 245 16			1331	153	49	238	62	135	795	26
PM Model Volume Inputs												
Hour		South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	56	239	28	0	1062	140	121	364	96	179	1211	67
Heavies	1	3	1	0	25	0	5	7	1	1	31	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	10	0	0	0	0	0	28	0
Total	57	242	29	0	1097	140	126	371	97	180	1270	67

Table 12 TCS 602 – Canterbury Road / Fore Street

AM Model Volume Inputs												
Hour	;	South Leg			West Leg			North Leg			East Leg	
Houl	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	265	0	200	163	1564	0	0	0	0	0	1030	95
Heavies	15	0	9	4	68	0	0	0	0	0	41	8
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	95	0	0	0	0	0	17	0
Total	280	0	209	167	1727	0	0	0	0	0	1088	103
PM Model Volume Inputs												
Hour	;	South Leg			West Leg			North Leg			East Leg	
Tioui	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	183	0	242	158	1247	0	0	0	0	0	1542	172
Heavies	3	0	1	2	14	0	0	0	0	0	32	6
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	27	0	0	0	0	0	84	0

Table 13 TCS 855 Canterbury Road / Jeffery Street

AM Model Volume Inpu	uts	7,50										
Hour		South Leg			West Leg			North Leg			East Leg	
Πουί	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	1575	247	29	77	18	0	0	167	19	0	3	852
Heavies	67	18	0	3	7	0	0	6	3	0	10	49
Construction Forecast	2	0	11	0	10	0	0	0	0	0	0	16
TTP Buses	95	0	0	0	0	0	0	0	0	0	0	17
Total	1739	265	40	80	35	0	0	173	22	0	13	934
PM Model Volume Inpu	ıts											
Hour		South Leg			West Leg			North Leg			East Leg	
ΠOUI	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	1010	249	21	83	18	0	0	314	28	0	14	1569
Heavies	19	6	0	3	3	0	0	5	0	0	5	32
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0

Table 14 TCS 1153 – Marrickville Road / Petersham Road

Table 14 TCS 1153 – Marrici	kviile Roa	a / Petersnai	т коаа									
AM Model Volume Inpu	uts											
Hour		South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	10	25	34	133	650	0	23	88	21	7	312	16
Heavies	1	0	1	1	30	0	0	0	0	1	17	3
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	0	0	0	0	0	0	8	0
Total	11	25	35	134	680	0	23	88	21	8	337	19
PM Model Volume Inpu	ıts											
Hour		South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	18	28	56	167	411	0	31	95	34	4	643	26
Heavies	0	0	1	1	13	0	2	0	0	0	17	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	0	0	0	0	0	0	50	0
Total	18	28	57	168	424	0	33	95	34	4	710	26

Table 15 TCS 1167 - Canterbury Road and Wonga Street

AM Model Volume Inputs		u wongu sti	eet									
7tiii iiiodoi 70taino iiipato												
Hour		South Leg			West Leg			North Leg			East Leg	
rioui	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	1623	15	63	0	171	185	1068	0	0	0	0
Heavies	0	118	0	4	0	5	8	47	0	0	0	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	70	0	0	0	25	13	4	0	0	0	0
Total	0	1811	15	67	0	201	206	1119	0	0	0	0
PM Model Volume Inputs												
Hour		South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	1198	63	154	0	193	326	1719	0	0	0	0
Heavies	0	21	2	0	0	5	2	56	0	0	0	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	22	0	0	0	5	56	28	0	0	0	0
Total	0	1241	65	154	0	203	384	1803	0	0	0	0

Table 16 TCS 1203 – Chapel Road / Rickard Road

AM Model Volume Inputs												
Hour	;	South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	183	89	129	449	66	33	222	93	68	228	77
Heavies	0	3	0	0	9	1	1	9	25	25	13	3
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	10
TTP Buses	0	16	0	0	0	0	0	14	0	0	0	0
Total	0	202	89	129	458	67	34	245	118	93	241	90
PM Model Volume Inputs												
Hour	:	South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	292	194	122	425	87	33	359	172	206	603	151
Heavies	0	2	1	0	12	0	1	8	27	32	6	6
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	10
TTP Buses	0	18	0	0	0	0	0	20	0	0	0	0
Total	0	312	195	122	437	87	34	387	199	238	609	167

Table 17 TCS 1299 - Haldon Street / The Boulevarde

AM Model Volume Inputs												
Hour		South Leg			West Leg			North Leg			East Leg	
rioui	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	240	39	37	160	157	158	225	101	202	77	20
Heavies	0	21	8	6	31	3	1	18	3	14	12	0
Construction Forecast	0	8	7	5	0	0	0	8	0	0	0	0
TTP Buses	0	0	0	0	70	0	0	0	0	0	13	0
Total	0	269	54	48	261	160	159	251	104	216	102	20
PM Model Volume Inputs												
Hour		South Leg			West Leg			North Leg			East Leg	
noui	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	261	91	36	128	190	158	221	100	232	142	25
Heavies	0	14	9	5	20	4	4	13	3	2	23	2
Construction Forecast	0	8	7	5	0	0	0	8	0	0	0	0
TTP Buses	0	0	0	0	22	0	0	0	0	0	62	0
111 Baccc												

Table 18 TCS 1303 - New Canterbury Road / Duntroon Street

AM Model Volume Inputs												
Hour	:	South Leg			West Leg			North Leg			East Leg	
Tioui	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	78	0	6	54	990	0	0	0	0	0	509	16
Heavies	1	0	0	1	82	0	0	0	0	0	38	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	57	0	0	0	0	0	8	0
Total	79	0	6	55	1129	0	0	0	0	0	555	16
PM Model Volume Inputs												
Hour		South Leg			West Leg			North Leg			East Leg	
Tioui	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	33	0	29	59	686	0	0	0	0	0	1128	100
Heavies	0	0	0	1	23	0	0	0	0	0	49	1
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	15	0	0	0	0	0	50	0
Total	33	0	29	60	724	0	0	0	0	0	1227	101

Table 19 TCS 1329 - Burwood Road / Leylands Parade

AM Model Volume Inputs														
Hour	,	South Leg			West Leg			North Leg			East Leg			
Houl	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left		
Light	25	313	31	0	114	127	50	239	37	167	163	51		
Heavies	1	35	0	0	2	2	1	33	1	4	3	2		
Construction Forecast	0	17	0	0	0	0	0	17	0	0	0	0		
TTP Buses	0	4	0	0	0	0	0	32	0	0	0	0		
Total	26 369 3 ⁴			0	116	129	51	321	38	171	166	53		
PM Model Volume Inputs														
Hour	:	South Leg			West Leg			North Leg			East Leg			
Houl	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left		
Light	44	453	64	0	126	191	61	289	47	201	197	34		
Heavies	2	59	0	0	3	4	1	25	1	4	4	1		
Construction Forecast	0	17	0	0	0	0	0	17	0	0	0	0		
TTP Buses	0	28	0	0	0	0	0	10	0	0	0	0		
Total	46	557	64	0	129	195	62	341	48	205	201	35		

Table 20 TCS 1363 - Fifth Avenu	e / Nintn	Avenue										
AM Model Volume Inputs												
Hour	:	South Leg			West Leg			North Leg			East Leg	
Tioui	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	0	0	0	287	97	123	0	180	223	130	0
Heavies	0	0	0	0	2	2	5	0	5	8	3	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	38	0	0	0	0	0	9	0
Total	0 0				327	99	128	0	185	231	142	0
PM Model Volume Inputs												
Hour	;	South Leg			West Leg			North Leg			East Leg	
Tioui	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	0	0	0	261	127	177	0	221	245	292	0
Heavies	0	0	0	0	0	0	6	0	5	0	4	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	0	0	0	12	0	0	0	0	0	34	0
Total	0	0	0	0	273	127	183	0	226	245	330	0

Table 21 TCS 1744 – Punchbowl Road / The Boulevarde

AM Model Volume Inpu	ıts											
Hour		South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	399	494	0	0	0	0	0	617	83	121	0	242
Heavies	0	39	0	0	0	0	0	41	0	4	0	7
Construction Forecast	0	3	0	0	0	0	0	3	3	3	0	0
TTP Buses	70	0 0			0	0	0	0	0	0	0	13
Total				0	0	0	0	661	86	128	0	262
PM Model Volume Inpu	ıts											
Hour		South Leg			West Leg			North Leg			East Leg	
Hour	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	400	591	0	0	0	0	0	756	86	231	0	447
Heavies	0	18	0	0	0	0	0	30	0	4	0	9
Construction Forecast	0	3	0	0	0	0	0	3	3	3	0	0
TTP Buses	22	0	0	0	0	0	0	0	0	0	0	62
Total	422	612	0	0	0	0	0	789	89	238	0	518

Table 22 TCS 1744 – Punchbowl Road / South Terrace

Table 22 TCS 1744 – Punchb		i / South Ten	uce									
AM Model Volume Inpu	uts											
Hour		South Leg			West Leg			North Leg			East Leg	
noul	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	543	214	74	0	350	272	587	0	0	0	0
Heavies	0	17	0	0	0	0	0	21	0	0	0	0
Construction Forecast	0	0	0	0	0	3	3	0	0	0	0	0
TTP Buses	0	70	0	0	0	0	0	13	0	0	0	0
Total	0	630	214	74	0	353	275	621	0	0	0	0
PM Model Volume Inpu	ıts											
Hour		South Leg			West Leg			North Leg			East Leg	
noui	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	397	202	122	0	594	429	774	0	0	0	0
Heavies	0	12	0	0	0	0	0	27	0	0	0	0
Construction Forecast	0	0	0	0	0	3	3	0	0	0	0	0
TTP Buses	0	22	0	0	0	0	0	62	0	0	0	0
Total	0	431	202	122	0	597	432	863	0	0	0	0

Table 23 TCS 1817 - Restwell Street / South Terrace

Table 23 TCS 1817 - Restwell S	ireel / Sc	util Terrace										
AM Model Volume Inputs	S											
Hour		South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	547	0	60	0	0	0	0	0	1	0	0	0
Heavies	11	0	25	43	24	0	31	0	0	0	0	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	4	0	0	0	38	0	16	0	0	0	0	0
Total	1120				86	0	78	0	2	0	0	0
PM Model Volume Inputs	5											
Harris		South Leg			West Leg			North Leg			East Leg	
Hour	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	792	0	93	0	3	0	0	0	6	0	0	0
Heavies	6	0	43	42	28	0	29	0	0	0	0	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	22	0	0	0	18	0	18	0	0	0	0	0
Total	1618	0	272	84	80	0	76	0	12	0	0	0

Table 24 TCS 2789 - Joseph Street / Georges Avenue

AM Model Volume Inputs												
Hour	;	South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	165	2173	24	48	154	88	70	1363	28	7	200	70
Heavies	8	166	2	1	3	3	2	122	0	1	8	6
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	6	0	0	0	10	8	6	0	0	0	0
Total	173	2345	26	49	157	101	80	1491	28	8	208	76
PM Model Volume Inputs												
Hour	;	South Leg			West Leg			North Leg			East Leg	
noui	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	92	1681	61	27	167	83	124	1931	30	20	256	179
Heavies	2	72	0	1	2	0	1	67	1	0	3	5
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	8	0	0	0	10	12	8	0	0	0	0
Total	94	1761	61	28	169	93	137	2006	31	20	259	184

Table 25 TCS 2816 – Beamish Street / Amy Street

AM Model Volume Inputs														
Hour	;	South Leg			West Leg			North Leg			East Leg			
Tioui	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left		
Light	0	436	71	0	0	34	3	466	0	0	0	0		
Heavies	0	45	1	0	0	0	0	45	0	0	0	0		
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0		
TTP Buses	0	0 13 0			0	0	0	38	0	0	0	0		
Total	0	0 494 72		0	0	34	3	549	0	0	0	0		
PM Model Volume Inputs														
Hour	;	South Leg			West Leg			North Leg			East Leg			
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left		
Light	0	473	104	0	0	142	6	521	0	0	0	0		
Heavies	0	32	1	0	0	0	0	33	0	0	0	0		
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0		
TTP Buses	0	56	0	0	0	0	0	12	0	0	0	0		
Total	0	561	105	0	0	142	6	566	0	0	0	0		

Table 26 TCS 3340 – New Canterbury Road / Frazer Street

Table 20 TCS 3340 – New Calife		aa y TTazer s										
AM Model Volume Inputs	ı			ı								
Hour		South Leg			West Leg			North Leg			East Leg	
Tioui	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	300	802	0	0	0	0	0	340	127	67	0	74
Heavies	6	44	0	0	0	0	0	24	2	1	0	8
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	57	0	0	0	0	0	0	0	0	0	0	0
Total	363	863 846 0			0	0	0	364	129	68	0	82
PM Model Volume Inputs												
Hour		South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	182	522	0	0	0	0	0	800	98	142	0	205
Heavies	1	14	0	0	0	0	0	21	3	1	0	2
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	15	0	0	0	0	0	0	0	0	0	0	0
Total	198	536	0	0	0	0	0	821	101	143	0	207

Table 27 TCS 4074 – Restwell Street / Raymond Street / Greenfield Parade

AM Model Volume Inputs												
Hour		South Leg			West Leg			North Leg			East Leg	
Tioui	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	301	194	0	0	373	0	0	0	59	210	101
Heavies	0	32	0	0	0	0	0	39	0	4	0	2
Construction Forecast	0	0	0	0	0	0	0	0	0	8	0	0
TTP Buses	0	0 0			0	0	0	0	0	13	0	0
Total	0	0 333 194			0	373	0	39	0	84	210	103
PM Model Volume Inputs												
Hour		South Leg			West Leg			North Leg			East Leg	
Houi	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	0	226	186	0	0	535	0	0	0	109	408	259
Heavies	0	26	0	0	0	0	0	36	0	7	0	2
Construction Forecast	0	0	0	0	0	0	0	0	0	8	0	0
TTP Buses	0	0	0	0	0	0	0	0	0	62	0	0
Total	0	252	186	0	0	535	0	36	0	186	408	261

Table 28 TCS 4408 – Chapel Road / French Avenue

AM Model Volume Inputs												
Hour	:	South Leg			West Leg			North Leg			East Leg	
Houl	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	41	235	16	11	67	29	50	282	15	37	55	37
Heavies	1	23	0	0	1	1	1	33	0	0	2	2
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	Buses 0				0	0	0	14	0	0	0	0
Total					68	30	51	329	15	37	57	39
PM Model Volume Inputs												
Hour	:	South Leg			West Leg			North Leg			East Leg	
Houl	Right	Through	Left	Right	Through	Left	Right	Through	Left	Right	Through	Left
Light	76	436	89	36	60	53	109	493	44	40	64	48
Heavies	0	36	0	0	0	0	0	34	0	1	0	0
Construction Forecast	0	0	0	0	0	0	0	0	0	0	0	0
TTP Buses	0	18	0	0	0	0	0	20	0	0	0	0
Total	76	490	89	36	60	53	109	547	44	41	64	48

Appendix D

Intersection Movement Summaries

Site: TCS 41 [Sydenham Rd / Victoria Rd - Base Future (Site

Folder: AM)]

Sydenham Rd / Victoria Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 75 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	icle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Victo	oria Rd												
1	L2	48	3	51	6.3	* 0.878	49.9	LOS D	9.7	72.3	1.00	1.05	1.47	22.5
2	T1	385	32	405	8.3	0.878	44.1	LOS D	10.1	75.9	1.00	1.05	1.47	28.5
Appr	oach	433	35	456	8.1	0.878	44.7	LOS D	10.1	75.9	1.00	1.05	1.47	27.9
East	: Syder	nham Rd												
4	L2	34	6	36	17.6	0.257	16.5	LOS B	4.8	36.4	0.59	0.53	0.59	46.0
5	T1	549	43	578	7.8	0.963	42.8	LOS D	22.8	171.4	0.86	1.03	1.32	27.0
6	R2	44	6	46	13.6	0.963	65.1	LOS E	22.8	171.4	1.00	1.29	1.71	25.7
Appr	oach	627	55	660	8.8	0.963	42.9	LOS D	22.8	171.4	0.85	1.02	1.30	27.7
North	n: Victo	ria Rd												
7	L2	80	14	84	17.5	0.262	27.2	LOS B	3.7	29.2	0.79	0.72	0.79	37.8
8	T1	212	19	223	9.0	0.856	36.9	LOS C	11.3	84.9	0.96	1.03	1.24	30.4
9	R2	107	7	113	6.5	* 0.856	46.6	LOS D	11.3	84.9	1.00	1.12	1.36	23.3
Appr	oach	399	40	420	10.0	0.856	37.5	LOS C	11.3	84.9	0.94	0.99	1.18	30.0
Wes	t: Syde	nham Rd												
10	L2	183	10	193	5.5	0.238	13.1	LOS A	4.3	31.3	0.50	0.65	0.50	40.7
11	T1	731	36	769	4.9	* 0.952	46.8	LOS D	38.8	284.0	0.96	1.23	1.43	25.6
12	R2	20	3	21	15.0	0.952	55.8	LOS D	38.8	284.0	1.00	1.28	1.50	21.1
Appr	oach	934	49	983	5.2	0.952	40.4	LOS C	38.8	284.0	0.87	1.12	1.24	27.2
All Vehic	cles	2393	179	2519	7.5	0.963	41.4	LOS C	38.8	284.0	0.90	1.06	1.29	27.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov _	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Victoria	Rd										
P1 Full	50	53	31.8	LOS D	0.1	0.1	0.92	0.92	211.1	215.2	1.02
East: Sydenha	m Rd										
P2 Full	50	53	31.8	LOS D	0.1	0.1	0.92	0.92	211.1	215.2	1.02
North: Victoria	Rd										

Site: TCS 41 [Sydenham Rd / Victoria Rd - Construction (Site

Folder: AM)]

Sydenham Rd / Victoria Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Victo	oria Rd												
1	L2	48	3	51	6.3	0.903	50.5	LOS D	9.5	70.7	1.00	1.10	1.60	22.3
2	T1	385	32	405	8.3	* 0.903	44.6	LOS D	9.9	74.4	1.00	1.10	1.59	28.3
Appr	oach	433	35	456	8.1	0.903	45.3	LOS D	9.9	74.4	1.00	1.10	1.59	27.7
East	Syder	nham Rd												
4	L2	34	6	36	17.6	0.266	16.1	LOS B	4.6	35.4	0.60	0.54	0.60	46.3
5	T1	563	57	593	10.1	* 0.996	51.3	LOS D	25.5	194.5	0.86	1.12	1.49	24.4
6	R2	44	6	46	13.6	0.996	77.8	LOS F	25.5	194.5	1.00	1.43	1.96	23.0
Appr	oach	641	69	675	10.8	0.996	51.3	LOS D	25.5	194.5	0.86	1.11	1.47	25.0
North	n: Victo	ria Rd												
7	L2	80	14	84	17.5	0.267	26.3	LOS B	3.5	27.5	0.80	0.72	0.80	38.3
8	T1	212	19	223	9.0	0.872	36.2	LOS C	11.0	82.2	0.96	1.05	1.30	30.7
9	R2	107	7	113	6.5	* 0.872	45.9	LOS D	11.0	82.2	1.00	1.14	1.43	23.6
Appr	oach	399	40	420	10.0	0.872	36.8	LOS C	11.0	82.2	0.94	1.01	1.23	30.3
West	: Syde	nham Rd												
10	L2	183	10	193	5.5	0.246	12.7	LOSA	4.1	30.1	0.50	0.65	0.50	41.1
11	T1	745	50	784	6.7	0.983	57.1	LOS E	42.4	314.5	0.96	1.36	1.62	22.8
12	R2	20	3	21	15.0	0.983	67.2	LOS E	42.4	314.5	1.00	1.42	1.72	18.5
Appr	oach	948	63	998	6.6	0.983	48.7	LOS D	42.4	314.5	0.87	1.22	1.41	24.5
All Vehic	cles	2421	207	2548	8.6	0.996	46.8	LOS D	42.4	314.5	0.90	1.14	1.43	26.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov _	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Victoria	a Rd										
P1 Full	50	53	29.3	LOS C	0.1	0.1	0.92	0.92	208.7	215.2	1.03
East: Sydenha	am Rd										
P2 Full	50	53	29.3	LOS C	0.1	0.1	0.92	0.92	208.7	215.2	1.03
North: Victoria	Rd										

Site: TCS 41 [Sydenham Rd / Victoria Rd - TTP (Site Folder:

AM)]

Sydenham Rd / Victoria Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 75 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Victo	oria Rd												
1 2	L2 T1	48 385	3 32	51 405	6.3 8.3	0.967 * 0.967	67.8 61.9	LOS E	11.7 12.2	87.2 91.8	1.00 1.00	1.23 1.23	1.89 1.88	18.2 23.5
Appr	oach	433	35	456	8.1	0.967	62.5	LOS E	12.2	91.8	1.00	1.23	1.88	23.0
East:	Syde	nham Rd												
4 5	L2 T1	34 563	6 57	36 593	17.6 10.1	0.284 1.063	16.1 75.2	LOS B	5.3 31.7	41.0 241.8	0.59	0.53	0.59 1.69	46.4 18.9
6 Appro	R2 oach	641	6 69	46 675	13.6 10.8	1.063 1.063	75.2	LOS F	31.7	241.8	0.84	1.66	2.39 1.68	16.8
North	ı: Victo	oria Rd												
7 8 9	L2 T1 R2	80 212 107	14 19 7	84 223 113	17.5 9.0 6.5	0.256 0.837 * 0.837	28.0 35.8 44.0	LOS B LOS C LOS D	3.5 11.4 11.4	27.5 85.4 85.4	0.80 0.97 1.00	0.73 1.03 1.09	0.80 1.21 1.30	37.3 30.8 24.2
Appr		399	40	420	10.0	0.837	36.4	LOS C	11.4	85.4	0.94	0.99	1.15	30.4
West	: Syde	nham Rd												
10 11 12	L2 T1 R2	183 802 20	10 107 3	193 844 21	5.5 13.3 15.0	0.266 * 1.064 1.064	13.3 104.0 120.2	LOS A LOS F LOS F	4.8 63.8 63.8	35.7 497.6 497.6	0.51 0.95 1.00	0.64 1.74 1.86	0.51 2.09 2.26	40.8 15.0 11.7
Appro	oach	1005	120	1058	11.9	1.064	87.8	LOSF	63.8	497.6	0.87	1.54	1.81	16.5
Vehic	eles	2478	264	2608	10.7	1.064	71.8	LOS F	63.8	497.6	0.90	1.31	1.68	19.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	VERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Victoria	Rd										
P1 Full	50	53	31.8	LOS D	0.1	0.1	0.92	0.92	211.1	215.2	1.02
East: Sydenha	ım Rd										
P2 Full	50	53	31.8	LOS D	0.1	0.1	0.92	0.92	211.1	215.2	1.02
North: Victoria	Rd										

Site: TCS 41 [Sydenham Rd / Victoria Rd - TTP - Mitigated (Site

Folder: AM)]

Sydenham Rd / Victoria Rd Site Category: (None)

Veh	icle M	ovemen	t Perfor	mance										
	Turn	INF		DEM.		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service		EUE	Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	th: Victo													
1	L2	48	3	51	6.3	* 0.782	42.0	LOS C	8.6	63.9	1.00	0.94	1.23	25.1
2	T1	385	32	405	8.3	0.782	36.3	LOS C	8.9	66.9	1.00	0.94	1.23	31.3
Appr	roach	433	35	456	8.1	0.782	36.9	LOS C	8.9	66.9	1.00	0.94	1.23	30.7
East	:: Sydei	nham Rd												
4	L2	34	6	36	17.6	0.279	15.8	LOS B	5.1	39.1	0.58	0.53	0.58	46.6
5	T1	563	57	593	10.1	* 1.044	67.3	LOS E	29.6	225.5	0.84	1.19	1.63	20.4
6	R2	44	6	46	13.6	1.044	107.5	LOS F	29.6	225.5	1.00	1.60	2.28	18.4
Appr	roach	641	69	675	10.8	1.044	67.3	LOS E	29.6	225.5	0.84	1.18	1.62	21.0
Nort	h: Victo	ria Rd												
7	L2	80	14	84	17.5	0.265	27.8	LOS B	3.5	27.4	0.81	0.73	0.81	37.4
8	T1	212	19	223	9.0	0.866	37.5	LOS C	11.8	88.2	0.97	1.05	1.28	30.2
9	R2	107	7	113	6.5	* 0.866	46.3	LOS D	11.8	88.2	1.00	1.12	1.39	23.4
Appr	roach	399	40	420	10.0	0.866	37.9	LOS C	11.8	88.2	0.94	1.00	1.22	29.9
Wes	t: Syde	nham Ro	l											
10	L2	183	10	193	5.5	0.306	13.7	LOSA	5.5	41.4	0.54	0.63	0.54	40.8
11	T1	802	107	844	13.3	1.020	73.7	LOS F	51.7	403.3	0.94	1.48	1.76	19.2
12	R2	20	3	21	15.0	1.020	89.9	LOS F	51.7	403.3	1.00	1.62	1.96	14.8
Appr	roach	1005	120	1058	11.9	1.020	63.1	LOS E	51.7	403.3	0.86	1.33	1.54	20.8
All Vehi	cles	2478	264	2608	10.7	1.044	55.6	LOS D	51.7	403.3	0.89	1.17	1.46	23.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Movem	ent Perf	ormano	е							
Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	UE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Victoria	a Rd										
P1 Full	50	53	30.8	LOS D	0.1	0.1	0.92	0.92	210.1	215.2	1.02
East: Sydenha	am Rd										
P2 Full	50	53	30.8	LOS D	0.1	0.1	0.92	0.92	210.1	215.2	1.02
North: Victoria	Rd										
P3 Full	50	53	30.8	LOS D	0.1	0.1	0.92	0.92	210.1	215.2	1.02

Site: TCS 42 [Wardell Rd / Frazer St - Future Base (Site Folder:

AM)]

Wardell Rd / Frazer St Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 30 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: War	dell Rd												
1	L2	36	2	38	5.6	0.156	13.4	LOSA	1.0	7.1	0.77	0.65	0.77	44.2
2	T1	278	2	293	0.7	0.768	13.1	LOS A	6.1	43.5	0.93	0.93	1.21	41.2
3	R2	122	4	128	3.3	* 0.768	18.5	LOS B	6.1	43.5	0.96	0.98	1.29	41.8
Appr	oach	436	8	459	1.8	0.768	14.7	LOS B	6.1	43.5	0.93	0.92	1.19	41.6
East	Fraze	r St												
4	L2	53	1	56	1.9	0.102	14.1	LOSA	0.6	4.4	0.75	0.71	0.75	43.3
5	T1	147	8	155	5.4	0.457	10.7	LOSA	2.7	19.4	0.88	0.73	0.88	47.5
6	R2	44	1	46	2.3	0.457	16.3	LOS B	2.7	19.4	0.88	0.73	0.88	44.1
Appr	oach	244	10	257	4.1	0.457	12.5	LOSA	2.7	19.4	0.85	0.73	0.85	45.8
North	n: Ward	dell Rd												
7	L2	45	4	47	8.9	0.092	13.2	LOSA	0.5	4.0	0.75	0.69	0.75	42.5
8	T1	120	3	126	2.5	0.228	9.0	LOSA	1.5	10.7	0.79	0.62	0.79	44.2
9	R2	2	0	2	0.0	0.228	13.6	LOSA	1.5	10.7	0.79	0.62	0.79	45.1
Appr	oach	167	7	176	4.2	0.228	10.2	LOSA	1.5	10.7	0.78	0.64	0.78	43.8
West	:: Fraze	er St												
10	L2	4	0	4	0.0	0.147	14.3	LOSA	0.9	6.8	0.76	0.60	0.76	46.0
11	T1	387	8	407	2.1	0.679	11.4	LOSA	5.3	37.9	0.90	0.80	1.02	47.9
12	R2	32	1	34	3.1	* 0.679	17.3	LOS B	5.3	37.9	0.93	0.86	1.08	44.1
Appr	oach	423	9	445	2.1	0.679	11.8	LOSA	5.3	37.9	0.90	0.81	1.02	47.5
All Vehic	cles	1270	34	1337	2.7	0.768	12.7	LOSA	6.1	43.5	0.88	0.81	1.02	44.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Movem	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Et Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
South: Wardel	ll Rd										
P1 Full	50	53	9.6	LOS A	0.0	0.0	0.80	0.80	175.2	215.2	1.23
East: Frazer S	St										
P2 Full	50	53	9.6	LOS A	0.0	0.0	0.80	0.80	175.2	215.2	1.23

Site: TCS 42 [Wardell Rd / Frazer St - Construction (Site

Folder: AM)]

Wardell Rd / Frazer St Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 30 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: War	dell Rd												
1	L2	36	2	38	5.6	0.156	13.4	LOSA	1.0	7.1	0.77	0.65	0.77	44.2
2	T1	278	2	293	0.7	0.768	13.1	LOSA	6.1	43.5	0.93	0.93	1.21	41.2
3	R2	122	4	128	3.3	* 0.768	18.5	LOS B	6.1	43.5	0.96	0.98	1.29	41.8
Appr	oach	436	8	459	1.8	0.768	14.7	LOS B	6.1	43.5	0.93	0.92	1.19	41.6
East:	Fraze	r St												
4	L2	53	1	56	1.9	0.102	14.1	LOSA	0.6	4.4	0.75	0.71	0.75	43.3
5	T1	147	8	155	5.4	0.457	10.7	LOS A	2.7	19.4	0.88	0.73	0.88	47.5
6	R2	44	1	46	2.3	0.457	16.3	LOS B	2.7	19.4	0.88	0.73	0.88	44.1
Appr	oach	244	10	257	4.1	0.457	12.5	LOSA	2.7	19.4	0.85	0.73	0.85	45.8
North	n: Ward	dell Rd												
7	L2	45	4	47	8.9	0.092	13.2	LOSA	0.5	4.0	0.75	0.69	0.75	42.5
8	T1	120	3	126	2.5	0.228	9.0	LOSA	1.5	10.7	0.79	0.62	0.79	44.2
9	R2	2	0	2	0.0	0.228	13.6	LOSA	1.5	10.7	0.79	0.62	0.79	45.1
Appr	oach	167	7	176	4.2	0.228	10.2	LOSA	1.5	10.7	0.78	0.64	0.78	43.8
West	:: Fraze	er St												
10	L2	4	0	4	0.0	0.147	14.3	LOSA	0.9	6.8	0.76	0.60	0.76	46.0
11	T1	387	8	407	2.1	0.679	11.4	LOSA	5.3	37.9	0.90	0.80	1.02	47.9
12	R2	32	1	34	3.1	* 0.679	17.3	LOS B	5.3	37.9	0.93	0.86	1.08	44.1
Appr	oach	423	9	445	2.1	0.679	11.8	LOSA	5.3	37.9	0.90	0.81	1.02	47.5
All Vehic	cles	1270	34	1337	2.7	0.768	12.7	LOSA	6.1	43.5	0.88	0.81	1.02	44.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian l	Movem	ent Perf	ormano	се							
Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Warde	ll Rd										
P1 Full	50	53	9.6	LOS A	0.0	0.0	0.80	0.80	175.2	215.2	1.23
East: Frazer S	St										
P2 Full	50	53	9.6	LOS A	0.0	0.0	0.80	0.80	175.2	215.2	1.23

Site: TCS 42 [Wardell Rd / Frazer St - TTP (Site Folder: AM)]

Wardell Rd / Frazer St Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site Optimum Cycle Time - Minimum

Delay)

Veh	icle M	ovemen	t Perfo	mance										
	Turn		PUT	DEM		Deg.		Level of	95% BA		Prop.	Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: War	dell Rd	VC11/11	VCII/II	/0	V/C	360		VCII	- '''				KIII/II
1	L2	36	2	38	5.6	0.146	15.3	LOS B	1.3	9.1	0.74	0.64	0.74	43.1
2	T1	278	2	293	0.7	0.722	14.7	LOS B	7.3	52.1	0.90	0.86	1.04	40.4
3	R2	122	4	128	3.3	* 0.722	20.1	LOS B	7.3	52.1	0.94	0.91	1.11	41.0
Appr	oach	436	8	459	1.8	0.722	16.3	LOS B	7.3	52.1	0.90	0.86	1.04	40.8
East	: Fraze	er St												
4	L2	53	1	56	1.9	0.082	14.5	LOSA	0.7	5.2	0.67	0.70	0.67	43.1
5	T1	147	8	155	5.4	0.406	12.7	LOSA	3.3	24.0	0.84	0.71	0.84	46.0
6	R2	44	1	46	2.3	0.406	18.3	LOS B	3.3	24.0	0.84	0.71	0.84	42.9
Appr	oach	244	10	257	4.1	0.406	14.1	LOSA	3.3	24.0	0.80	0.71	0.80	44.7
Nortl	h: Ward	dell Rd												
7	L2	45	4	47	8.9	0.085	15.1	LOS B	0.7	5.0	0.72	0.69	0.72	41.4
8	T1	120	3	126	2.5	0.211	10.9	LOSA	1.9	13.5	0.76	0.61	0.76	43.1
9	R2	2	0	2	0.0	0.211	15.5	LOS B	1.9	13.5	0.76	0.61	0.76	43.8
Appr	oach	167	7	176	4.2	0.211	12.1	LOSA	1.9	13.5	0.75	0.63	0.75	42.7
Wes	t: Fraze	er St												
10	L2	4	0	4	0.0	0.149	14.7	LOS B	1.3	10.0	0.69	0.55	0.69	45.7
11	T1	444	65	467	14.6	0.691	12.7	LOSA	7.6	59.1	0.86	0.78	0.94	46.9
12	R2	32	1	34	3.1	* 0.691	18.8	LOS B	7.6	59.1	0.90	0.84	1.01	43.2
Appr	oach	480	66	505	13.8	0.691	13.1	LOSA	7.6	59.1	0.86	0.78	0.95	46.6
All Vehi	cles	1327	91	1397	6.9	0.722	14.2	LOSA	7.6	59.1	0.85	0.77	0.93	43.5
Vehi	cles													

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian N		· · ·	<u> </u>								
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m Î			sec	m	m/sec
South: Wardel	l Rd										
P1 Full	50	53	14.5	LOS B	0.1	0.1	0.85	0.85	180.0	215.2	1.20
East: Frazer S	it										
P2 Full	50	53	14.5	LOS B	0.1	0.1	0.85	0.85	180.0	215.2	1.20
North: Wardell	Rd										

Site: TCS 61 [Hume Hwy / Chapel Rd / Rookwood Rd Future

Base (Site Folder: AM)]

Hume Hwy / Chapel Rd / Rookwood Rd

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 130 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Cha	pel Rd												
1	L2	120	5	126	4.2	0.242	43.1	LOS D	6.1	44.0	0.80	0.77	0.80	30.0
2	T1	151	5	159	3.3	* 0.569	55.2	LOS D	9.9	73.2	0.97	0.80	0.97	24.7
3	R2	6	6	6	100.0	0.569	61.8	LOS E	9.9	73.2	0.97	0.80	0.97	26.4
Appr	oach	277	16	292	5.8	0.569	50.1	LOS D	9.9	73.2	0.90	0.78	0.90	27.0
East:	Hume	e Hwy												
4	L2	86	8	91	9.3	0.434	27.1	LOS B	15.6	115.5	0.68	0.64	0.68	38.9
5	T1	1074	67	1131	6.2	0.434	21.0	LOS B	16.1	118.7	0.67	0.61	0.67	35.2
6	R2	30	1	32	3.3	0.207	67.4	LOS E	1.9	13.9	0.97	0.72	0.97	15.1
Appr	oach	1190	76	1253	6.4	0.434	22.6	LOS B	16.1	118.7	0.68	0.61	0.68	34.7
North	ı: Rool	kwood Ro	t											
7	L2	34	2	36	5.9	0.131	42.5	LOS C	3.1	22.6	0.78	0.68	0.78	21.2
8	T1	191	12	201	6.3	0.355	41.4	LOS C	8.8	65.1	0.85	0.71	0.85	28.9
9	R2	54	3	57	5.6	* 0.699	78.1	LOS F	3.9	28.6	1.00	0.81	1.18	13.4
Appr	oach	279	17	294	6.1	0.699	48.6	LOS D	8.8	65.1	0.87	0.72	0.90	24.4
West	: Hum	e Hwy												
10	L2	179	18	188	10.1	0.802	33.7	LOS C	37.8	281.8	0.89	0.84	0.89	25.2
11	T1	1911	132	2012	6.9	* 0.802	27.3	LOS B	39.3	291.2	0.88	0.81	0.88	31.3
12	R2	107	9	113	8.4	* 0.775	74.7	LOS F	7.6	57.2	1.00	0.88	1.20	22.4
Appr	oach	2197	159	2313	7.2	0.802	30.1	LOS C	39.3	291.2	0.89	0.82	0.90	30.0
All Vehic	cles	3943	268	4151	6.8	0.802	30.6	LOS C	39.3	291.2	0.83	0.75	0.83	30.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Movem	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
South: Chape	l Rd										
P1 Full	50	53	59.3	LOS E	0.2	0.2	0.96	0.96	225.4	216.0	0.96
North: Rookwe	ood Rd										
P3 Full	50	53	59.3	LOS E	0.2	0.2	0.96	0.96	227.3	218.5	0.96

Site: TCS 61 [Hume Hwy / Chapel Rd / Rookwood Rd

Construction (Site Folder: AM)]

Hume Hwy / Chapel Rd / Rookwood Rd

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 130 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Cha	pel Rd												
1	L2	120	5	126	4.2	0.242	43.1	LOS D	6.1	44.0	0.80	0.77	0.80	30.0
2	T1	151	5	159	3.3	* 0.569	55.2	LOS D	9.9	73.2	0.97	0.80	0.97	24.7
3	R2	6	6	6	100.0	0.569	61.8	LOS E	9.9	73.2	0.97	0.80	0.97	26.4
Appr	oach	277	16	292	5.8	0.569	50.1	LOS D	9.9	73.2	0.90	0.78	0.90	27.0
East	Hume	e Hwy												
4	L2	86	8	91	9.3	0.434	27.1	LOS B	15.6	115.5	0.68	0.64	0.68	38.9
5	T1	1074	67	1131	6.2	0.434	21.0	LOS B	16.1	118.7	0.67	0.61	0.67	35.2
6	R2	30	1	32	3.3	0.207	67.4	LOS E	1.9	13.9	0.97	0.72	0.97	15.1
Appr	oach	1190	76	1253	6.4	0.434	22.6	LOS B	16.1	118.7	0.68	0.61	0.68	34.7
North	n: Rook	kwood Ro	t											
7	L2	34	2	36	5.9	0.131	42.5	LOS C	3.1	22.6	0.78	0.68	0.78	21.2
8	T1	191	12	201	6.3	0.355	41.4	LOS C	8.8	65.1	0.85	0.71	0.85	28.9
9	R2	54	3	57	5.6	* 0.699	78.1	LOS F	3.9	28.6	1.00	0.81	1.18	13.4
Appr	oach	279	17	294	6.1	0.699	48.6	LOS D	8.8	65.1	0.87	0.72	0.90	24.4
West	: Hume	e Hwy												
10	L2	179	18	188	10.1	0.802	33.7	LOS C	37.8	281.8	0.89	0.84	0.89	25.2
11	T1	1911	132	2012	6.9	* 0.802	27.3	LOS B	39.3	291.2	0.88	0.81	0.88	31.3
12	R2	107	9	113	8.4	* 0.775	74.7	LOS F	7.6	57.2	1.00	0.88	1.20	22.4
Appr	oach	2197	159	2313	7.2	0.802	30.1	LOS C	39.3	291.2	0.89	0.82	0.90	30.0
All Vehic	cles	3943	268	4151	6.8	0.802	30.6	LOS C	39.3	291.2	0.83	0.75	0.83	30.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian	Movem	ent Perf	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
South: Chape	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
P1 Full	50	53	59.3	LOS E	0.2	0.2	0.96	0.96	225.4	216.0	0.96
North: Rookw	ood Rd										
P3 Full	50	53	59.3	LOS E	0.2	0.2	0.96	0.96	227.3	218.5	0.96

Site: TCS 61 [Hume Hwy / Chapel Rd / Rookwood Rd TTP (Site

Folder: AM)]

Hume Hwy / Chapel Rd / Rookwood Rd

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 130 seconds (Site Optimum Cycle Time - Minimum

Delay)

Mov ⁻ ID	Turn	INP	UT	DEM										
			IMES	FLO		Deg. Satn		Level of Service	QUE	ACK OF EUE	Prop. Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South:	Chap	oel Rd												
1	L2	130	15	137	11.5	0.275	42.9	LOS D	6.6	50.8	0.81	0.77	0.81	30.2
2	T1	157	11	165	7.0	* 0.610	55.7	LOS D	10.3	78.9	0.98	0.81	0.98	24.5
3	R2	6	6	6	100.0	0.610	62.3	LOS E	10.3	78.9	0.98	0.81	0.98	26.4
Approa	ach	293	32	308	10.9	0.610	50.2	LOS D	10.3	78.9	0.90	0.79	0.90	27.0
East: F	Hume	Hwy												
4	L2	86	8	91	9.3	0.441	27.8	LOS B	15.8	117.3	0.69	0.65	0.69	38.5
5	T1	1074	67	1131	6.2	0.441	21.7	LOS B	16.4	120.6	0.68	0.61	0.68	34.8
6	R2	30	1	32	3.3	0.190	66.1	LOS E	1.9	13.7	0.96	0.72	0.96	15.3
Approa	ach	1190	76	1253	6.4	0.441	23.2	LOS B	16.4	120.6	0.69	0.62	0.69	34.3
North:	Rook	wood Rd												
7	L2	34	2	36	5.9	0.137	42.6	LOS D	3.2	23.7	0.78	0.68	0.78	21.2
8	T1	197	18	207	9.1	0.373	41.6	LOS C	9.1	68.7	0.85	0.71	0.85	28.8
9	R2	54	3	57	5.6	* 0.699	78.1	LOS F	3.9	28.6	1.00	0.81	1.18	13.4
Approa	ach	285	23	300	8.1	0.699	48.6	LOS D	9.1	68.7	0.87	0.73	0.91	24.5
West:	Hume	e Hwy												
10	L2	179	18	188	10.1	0.816	35.6	LOS C	39.2	292.4	0.91	0.86	0.92	24.3
11	T1	1911	132	2012	6.9	* 0.816	29.1	LOS C	40.4	299.9	0.90	0.83	0.91	30.4
12	R2	115	17	121	14.8	* 0.813	76.0	LOS F	8.3	65.7	1.00	0.91	1.26	22.2
Approa	ach	2205	167	2321	7.6	0.816	32.0	LOS C	40.4	299.9	0.90	0.84	0.93	29.1
All Vehicle	es	3973	298	4182	7.5	0.816	31.9	LOS C	40.4	299.9	0.84	0.76	0.85	29.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian	Movem	ent Perf	orman	ce c							
Mov ID Crossing	Input	Dem. Flow	Aver. Delay		AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m ¹			sec	m	m/sec
South: Chape	el Rd										
P1 Full	50	53	59.3	LOS E	0.2	0.2	0.96	0.96	225.4	216.0	0.96
North: Rookv	vood Rd										
P3 Full	50	53	59.3	LOS E	0.2	0.2	0.96	0.96	227.3	218.5	0.96

Site: TCS 61 [Hume Hwy / Chapel Rd / Rookwood Rd Future

Base (Site Folder: PM)]

Hume Hwy / Chapel Rd / Rookwood Rd

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 147 seconds (Site User-Given Phase Times)

Vehi	cle M	ovemen	t Perfor	mance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service		EUE	Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Cha	pel Rd												
1	L2	244	10	257	4.1	0.534	53.3	LOS D	16.2	117.5	0.90	0.83	0.90	27.0
2	T1	331	9	348	2.7	* 1.068	151.0	LOS F	40.7	299.6	1.00	1.40	1.77	12.0
3	R2	11	11	12	100.0	1.068	160.9	LOS F	40.7	299.6	1.00	1.42	1.80	13.3
Appr	oach	586	30	617	5.1	1.068	110.5	LOS F	40.7	299.6	0.96	1.16	1.41	16.1
East:	Hume	Hwy												
4	L2	115	12	121	10.4	0.992	101.4	LOS F	66.6	490.4	1.00	1.19	1.39	19.0
5	T1	1842	92	1939	5.0	0.992	94.8	LOS F	69.4	506.5	1.00	1.21	1.39	14.5
6	R2	52	0	55	0.0	0.241	69.3	LOS E	3.6	25.2	0.94	0.75	0.94	14.8
Appr	oach	2009	104	2115	5.2	0.992	94.5	LOS F	69.4	506.5	1.00	1.20	1.38	14.8
North	ı: Rool	wood Ro	t											
7	L2	20	0	21	0.0	0.271	38.8	LOS C	9.4	67.2	0.73	0.63	0.73	23.8
8	T1	487	10	513	2.1	0.541	36.4	LOS C	18.3	130.3	0.79	0.68	0.79	31.1
9	R2	112	5	118	4.5	0.464	68.9	LOS E	7.9	57.4	0.97	0.79	0.97	14.7
Appr	oach	619	15	652	2.4	0.541	42.4	LOS C	18.3	130.3	0.82	0.70	0.82	27.3
West	: Hum	e Hwy												
10	L2	213	22	224	10.3	* 0.924	70.9	LOS F	51.2	373.7	1.00	1.03	1.19	14.8
11	T1	1610	30	1695	1.9	0.924	63.9	LOS E	54.4	387.2	0.99	1.04	1.18	19.2
12	R2	203	9	214	4.4	* 0.980	111.6	LOS F	19.9	144.7	1.00	1.07	1.55	17.2
Appr	oach	2026	61	2133	3.0	0.980	69.4	LOS E	54.4	387.2	1.00	1.04	1.22	18.5
All Vehic	cles	5240	210	5516	4.0	1.068	80.4	LOS F	69.4	506.5	0.97	1.07	1.25	17.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian Mov	Input	Dem.	Aver.		AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE		Que	Stop	Time	Dist.	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Chapel	l Rd										
P1 Full	50	53	67.8	LOS F	0.2	0.2	0.96	0.96	233.9	216.0	0.92
North: Rookwo	ood Rd										
P3 Full	50	53	67.8	LOS F	0.2	0.2	0.96	0.96	235.8	218.5	0.93
West: Hume H	łwy										

Site: TCS 61 [Hume Hwy / Chapel Rd / Rookwood Rd

Construction (Site Folder: PM)]

Hume Hwy / Chapel Rd / Rookwood Rd

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 147 seconds (Site User-Given Phase Times)

Vehi	cle M	ovemen	t Perfor	mance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Cha	pel Rd				.,,								1
1	L2	244	10	257	4.1	0.460	48.9	LOS D	14.7	106.4	0.85	0.81	0.85	28.2
2	T1	331	9	348	2.7	* 1.104	180.8	LOS F	45.6	335.4	1.00	1.52	1.94	10.3
3	R2	11	11	12	100.0	1.104	187.4	LOS F	45.6	335.4	1.00	1.52	1.94	11.7
Appr	oach	586	30	617	5.1	1.104	126.0	LOS F	45.6	335.4	0.94	1.22	1.49	14.5
East:	Hume	Hwy												
4	L2	115	12	121	10.4	0.992	101.4	LOS F	66.6	490.4	1.00	1.19	1.39	19.0
5	T1	1842	92	1939	5.0	0.992	94.8	LOS F	69.4	506.5	1.00	1.21	1.39	14.5
6	R2	52	0	55	0.0	0.241	69.3	LOS E	3.6	25.2	0.94	0.75	0.94	14.8
Appr	oach	2009	104	2115	5.2	0.992	94.5	LOS F	69.4	506.5	1.00	1.20	1.38	14.8
North	ı: Rool	wood Ro	t											
7	L2	20	0	21	0.0	0.226	38.1	LOS C	7.7	54.9	0.72	0.62	0.72	24.0
8	T1	487	10	513	2.1	0.612	37.0	LOS C	20.5	145.7	0.80	0.69	0.80	30.8
9	R2	112	5	118	4.5	0.464	68.9	LOS E	7.9	57.4	0.97	0.79	0.97	14.7
Appr	oach	619	15	652	2.4	0.612	42.8	LOS D	20.5	145.7	0.83	0.71	0.83	27.2
West	: Hum	e Hwy												
10	L2	213	22	224	10.3	* 0.924	70.9	LOS F	51.2	373.7	1.00	1.03	1.19	14.8
11	T1	1610	30	1695	1.9	0.924	63.9	LOS E	54.4	387.2	0.99	1.04	1.18	19.2
12	R2	203	9	214	4.4	* 0.980	111.6	LOS F	19.9	144.7	1.00	1.07	1.55	17.2
Appr	oach	2026	61	2133	3.0	0.980	69.4	LOS E	54.4	387.2	1.00	1.04	1.22	18.5
All Vehic	cles	5240	210	5516	4.0	1.104	82.2	LOS F	69.4	506.5	0.97	1.08	1.26	17.0

 $Site\ Level\ of\ Service\ (LOS)\ Method:\ Delay\ (RTA\ NSW).\ Site\ LOS\ Method\ is\ specified\ in\ the\ Parameter\ Settings\ dialog\ (Site\ tab).$

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian Mov	Input	Dem.	Aver.		AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE		Que	Stop	Time	Dist.	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Chapel	l Rd										
P1 Full	50	53	67.8	LOS F	0.2	0.2	0.96	0.96	233.9	216.0	0.92
North: Rookwo	ood Rd										
P3 Full	50	53	67.8	LOS F	0.2	0.2	0.96	0.96	235.8	218.5	0.93
West: Hume H	łwy										

Site: TCS 61 [Hume Hwy / Chapel Rd / Rookwood Rd TTP (Site

Folder: PM)]

Hume Hwy / Chapel Rd / Rookwood Rd

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 147 seconds (Site User-Given Phase Times)

Vehi	cle M	ovemen	t Perfoi	mance										
Mov ID	Turn	INP VOLL		DEM. FLO		Deg. Satn		Level of Service	95% BA QUE		Prop. Que	Effective Stop	Aver.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec	0011100	[Veh. veh	Dist] m	Quo	Rate	Cycles	km/h
South	h: Cha	pel Rd												
1	L2	254	20	267	7.9	0.497	49.6	LOS D	15.5	116.0	0.87	0.82	0.87	28.1
2	T1	339	17	357	5.0	* 1.153	218.5	LOS F	51.6	386.2	1.00	1.65	2.12	8.7
3	R2	11	11	12	100.0	1.153	225.1	LOS F	51.6	386.2	1.00	1.65	2.12	10.0
Appr	oach	604	48	636	7.9	1.153	147.6	LOS F	51.6	386.2	0.94	1.30	1.60	12.8
East:	Hume	e Hwy												
4	L2	115	12	121	10.4	0.992	101.4	LOS F	66.6	490.4	1.00	1.19	1.39	19.0
5	T1	1842	92	1939	5.0	0.992	94.8	LOS F	69.4	506.5	1.00	1.21	1.39	14.5
6	R2	52	0	55	0.0	0.241	69.3	LOS E	3.6	25.2	0.94	0.75	0.94	14.8
Appr	oach	2009	104	2115	5.2	0.992	94.5	LOS F	69.4	506.5	1.00	1.20	1.38	14.8
North	n: Rool	kwood Ro	ł											
7	L2	20	0	21	0.0	0.233	38.3	LOS C	7.9	56.8	0.72	0.62	0.72	24.0
8	T1	495	18	521	3.6	0.633	37.3	LOS C	20.9	150.9	0.81	0.70	0.81	30.7
9	R2	112	5	118	4.5	0.464	68.9	LOS E	7.9	57.4	0.97	0.79	0.97	14.7
Appr	oach	627	23	660	3.7	0.633	42.9	LOS D	20.9	150.9	0.83	0.71	0.83	27.1
West	:: Hum	e Hwy												
10	L2	213	22	224	10.3	* 0.926	71.6	LOS F	51.7	377.0	1.00	1.04	1.20	14.7
11	T1	1610	30	1695	1.9	0.926	64.6	LOS E	54.9	390.6	0.99	1.04	1.19	19.0
12	R2	215	21	226	9.8	* 1.095	182.0	LOS F	27.8	211.1	1.00	1.25	1.97	11.6
Appr	oach	2038	73	2145	3.6	1.095	77.7	LOS F	54.9	390.6	0.99	1.07	1.27	17.0
All Vehic	cles	5278	248	5556	4.7	1.153	88.0	LOS F	69.4	506.5	0.97	1.10	1.30	16.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian Mov	Input	Dem.	Aver.		AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE		Que	Stop	Time	Dist.	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Chapel	l Rd										
P1 Full	50	53	67.8	LOS F	0.2	0.2	0.96	0.96	233.9	216.0	0.92
North: Rookwo	ood Rd										
P3 Full	50	53	67.8	LOS F	0.2	0.2	0.96	0.96	235.8	218.5	0.93
West: Hume H	łwy										

Site: TCS 61 [Hume Hwy / Chapel Rd / Rookwood Rd TTP -

Mitigation (Site Folder: PM)]

Hume Hwy / Chapel Rd / Rookwood Rd

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 152 seconds (Site User-Given Phase Times)

Vehi	cle M	ovemen	t Perfor	mance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Cha	pel Rd		7 9 1 11 1										
1	L2	254	20	267	7.9	0.438	45.5	LOS D	15.0	112.0	0.81	0.81	0.81	29.4
2	T1	339	17	357	5.0	* 1.009	119.7	LOS F	38.6	288.9	1.00	1.28	1.55	14.6
3	R2	11	11	12	100.0	1.009	126.3	LOS F	38.6	288.9	1.00	1.28	1.55	16.3
Appro	oach	604	48	636	7.9	1.009	88.6	LOS F	38.6	288.9	0.92	1.08	1.24	19.0
East:	Hume	Hwy												
4	L2	115	12	121	10.4	* 0.898	61.2	LOS E	52.5	386.0	1.00	0.99	1.11	26.3
5	T1	1842	92	1939	5.0	0.898	54.5	LOS D	54.2	395.6	0.99	0.99	1.11	21.4
6	R2	52	0	55	0.0	0.213	68.7	LOS E	3.6	25.4	0.93	0.75	0.93	14.9
Appro	oach	2009	104	2115	5.2	0.898	55.3	LOS D	54.2	395.6	0.99	0.98	1.10	21.5
North	n: Rool	wood Ro	Ł											
7	L2	20	0	21	0.0	0.272	45.5	LOS D	8.9	64.3	0.78	0.67	0.78	21.4
8	T1	495	18	521	3.6	0.738	45.2	LOS D	23.4	169.0	0.87	0.75	0.87	27.8
9	R2	112	5	118	4.5	* 1.007	128.1	LOS F	11.7	85.3	1.00	1.11	1.72	9.0
Appro	oach	627	23	660	3.7	1.007	60.0	LOS E	23.4	169.0	0.89	0.81	1.02	22.3
West	: Hum	e Hwy												
10	L2	213	22	224	10.3	0.845	51.4	LOS D	44.0	320.7	0.97	0.91	1.01	18.8
11	T1	1610	30	1695	1.9	0.845	44.6	LOS D	46.5	331.0	0.95	0.89	0.99	24.1
12	R2	215	21	226	9.8	* 0.971	110.4	LOS F	21.4	162.7	1.00	1.05	1.50	17.3
Appro	oach	2038	73	2145	3.6	0.971	52.3	LOS D	46.5	331.0	0.96	0.91	1.05	22.3
All Vehic	cles	5278	248	5556	4.7	1.009	58.5	LOS E	54.2	395.6	0.96	0.95	1.09	21.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE		Que	Stop	Time	Dist.	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Chapel	Rd										
P1 Full	50	53	70.3	LOS F	0.2	0.2	0.96	0.96	236.4	216.0	0.91
North: Rookwo	ood Rd										
P3 Full	50	53	70.3	LOS F	0.2	0.2	0.96	0.96	238.3	218.5	0.92
West: Hume H	łwy										

Site: TCS 67 [Marrickville Rd / Livingstone Rd - Future Base

(Site Folder: PM)]

Marrickville Rd / Livingstone Rd - TCS 67

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 42 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: Livin	igstone R	ld											
1	L2	42	0	44	0.0	0.107	17.6	LOS B	0.9	6.2	0.74	0.67	0.74	43.6
2	T1	164	3	173	1.8	0.462	13.9	LOSA	3.7	26.5	0.86	0.73	0.86	41.4
3	R2	48	0	51	0.0	0.462	18.7	LOS B	3.7	26.5	0.87	0.73	0.87	38.7
Appro	oach	254	3	267	1.2	0.462	15.4	LOS B	3.7	26.5	0.84	0.72	0.84	41.4
East:	Marrio	ckville Rd												
4	L2	149	0	157	0.0	* 0.653	17.8	LOS B	8.6	61.5	0.86	0.79	0.89	40.5
5	T1	568	17	598	3.0	0.653	12.2	LOSA	8.6	61.5	0.87	0.80	0.91	45.1
6	R2	109	2	115	1.8	0.653	18.4	LOS B	7.0	49.9	0.88	0.81	0.94	39.8
Appro	oach	826	19	869	2.3	0.653	14.0	LOSA	8.6	61.5	0.87	0.80	0.91	43.4
North	n: Livin	gstone R	d											
7	L2	106	0	112	0.0	0.211	17.4	LOS B	1.8	12.7	0.80	0.74	0.80	37.5
8	T1	260	3	274	1.2	* 0.640	14.8	LOS B	6.3	44.6	0.91	0.82	0.97	41.2
9	R2	53	0	56	0.0	0.640	19.3	LOS B	6.3	44.6	0.91	0.82	0.97	43.3
Appro	oach	419	3	441	0.7	0.640	16.0	LOS B	6.3	44.6	0.88	0.80	0.93	40.7
West	:: Marri	ckville Ro	d d											
10	L2	53	0	56	0.0	0.330	15.1	LOS B	3.6	25.9	0.73	0.64	0.73	46.6
11	T1	363	10	382	2.8	0.330	9.9	LOSA	3.6	25.9	0.74	0.64	0.74	47.7
12	R2	20	0	21	0.0	0.330	15.8	LOS B	3.2	22.5	0.75	0.63	0.75	46.5
Appro	oach	436	10	459	2.3	0.330	10.8	LOSA	3.6	25.9	0.74	0.64	0.74	47.5
All Vehic	cles	1935	35	2037	1.8	0.653	13.9	LOSA	8.6	61.5	0.84	0.75	0.87	43.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Noveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A		BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
South: Livings	tone Rd										
P1 Full	50	53	15.5	LOS B	0.1	0.1	0.86	0.86	180.7	214.8	1.19
East: Marricky	ille Rd										
P2 Full	50	53	15.5	LOS B	0.1	0.1	0.86	0.86	181.0	215.2	1.19

Site: TCS 67 [Marrickville Rd / Livingstone Rd - Construction

(Site Folder: PM)]

Marrickville Rd / Livingstone Rd - TCS 67

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 42 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Livir	ngstone R	Rd											
1	L2	42	0	44	0.0	0.107	17.6	LOS B	0.9	6.2	0.74	0.67	0.74	43.6
2	T1	164	3	173	1.8	0.462	13.9	LOSA	3.7	26.5	0.86	0.73	0.86	41.4
3	R2	48	0	51	0.0	0.462	18.7	LOS B	3.7	26.5	0.87	0.73	0.87	38.7
Appr	oach	254	3	267	1.2	0.462	15.4	LOS B	3.7	26.5	0.84	0.72	0.84	41.4
East	Marri	ckville Rd												
4	L2	149	0	157	0.0	* 0.653	17.8	LOS B	8.6	61.5	0.86	0.79	0.89	40.5
5	T1	568	17	598	3.0	0.653	12.2	LOS A	8.6	61.5	0.87	0.80	0.91	45.1
6	R2	109	2	115	1.8	0.653	18.4	LOS B	7.0	49.9	0.88	0.81	0.94	39.8
Appr	oach	826	19	869	2.3	0.653	14.0	LOSA	8.6	61.5	0.87	0.80	0.91	43.4
North	n: Livin	gstone R	d											
7	L2	106	0	112	0.0	0.211	17.4	LOS B	1.8	12.7	0.80	0.74	0.80	37.5
8	T1	260	3	274	1.2	* 0.640	14.8	LOS B	6.3	44.6	0.91	0.82	0.97	41.2
9	R2	53	0	56	0.0	0.640	19.3	LOS B	6.3	44.6	0.91	0.82	0.97	43.3
Appr	oach	419	3	441	0.7	0.640	16.0	LOS B	6.3	44.6	0.88	0.80	0.93	40.7
West	: Marri	ickville Ro	t											
10	L2	53	0	56	0.0	0.330	15.1	LOS B	3.6	25.9	0.73	0.64	0.73	46.6
11	T1	363	10	382	2.8	0.330	9.9	LOSA	3.6	25.9	0.74	0.64	0.74	47.7
12	R2	20	0	21	0.0	0.330	15.8	LOS B	3.2	22.5	0.75	0.63	0.75	46.5
Appr	oach	436	10	459	2.3	0.330	10.8	LOSA	3.6	25.9	0.74	0.64	0.74	47.5
All Vehic	cles	1935	35	2037	1.8	0.653	13.9	LOSA	8.6	61.5	0.84	0.75	0.87	43.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Noveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A		BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
South: Livings	tone Rd										
P1 Full	50	53	15.5	LOS B	0.1	0.1	0.86	0.86	180.7	214.8	1.19
East: Marricky	ille Rd										
P2 Full	50	53	15.5	LOS B	0.1	0.1	0.86	0.86	181.0	215.2	1.19

Site: TCS 67 [Marrickville Rd / Livingstone Rd - TTP (Site

Folder: PM)]

Marrickville Rd / Livingstone Rd - TCS 67

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 42 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	icle M	ovemen	t Perfo	mance										
	Turn	INP		DEM		Deg.		Level of	95% BA			∃ffective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Livir	ngstone R				.,,								
1	L2	42	0	44	0.0	0.118	18.7	LOS B	0.9	6.5	0.77	0.68	0.77	43.2
2	T1	164	3	173	1.8	0.508	15.0	LOS B	3.9	27.5	0.89	0.75	0.89	40.9
3	R2	48	0	51	0.0	0.508	19.7	LOS B	3.9	27.5	0.90	0.75	0.90	38.1
Appr	oach	254	3	267	1.2	0.508	16.5	LOS B	3.9	27.5	0.87	0.74	0.87	40.9
East	: Marrio	ckville Rd												
4	L2	149	0	157	0.0	* 0.689	17.9	LOS B	9.4	70.3	0.87	0.82	0.93	40.5
5	T1	618	67	651	10.8	0.689	12.3	LOSA	9.4	70.3	0.87	0.83	0.95	44.9
6	R2	109	2	115	1.8	0.689	18.6	LOS B	7.6	57.0	0.88	0.84	0.98	39.7
Appr	oach	876	69	922	7.9	0.689	14.0	LOSA	9.4	70.3	0.87	0.83	0.95	43.4
North	h: Livin	gstone R	d											
7	L2	106	0	112	0.0	0.231	18.3	LOS B	1.9	13.2	0.82	0.74	0.82	37.0
8	T1	260	3	274	1.2	* 0.698	16.7	LOS B	6.8	47.9	0.95	0.88	1.09	40.4
9	R2	53	0	56	0.0	0.698	21.2	LOS B	6.8	47.9	0.95	0.88	1.09	42.4
Appr	oach	419	3	441	0.7	0.698	17.7	LOS B	6.8	47.9	0.91	0.85	1.02	39.9
West	t: Marri	ickville Ro	d											
10	L2	53	0	56	0.0	0.317	14.3	LOSA	3.5	25.3	0.70	0.62	0.70	47.1
11	T1	363	10	382	2.8	0.317	9.5	LOSA	3.5	25.3	0.72	0.63	0.72	48.1
12	R2	20	0	21	0.0	0.317	15.8	LOS B	3.1	21.9	0.74	0.63	0.74	46.6
Appr	oach	436	10	459	2.3	0.317	10.4	LOSA	3.5	25.3	0.72	0.63	0.72	47.8
All Vehic	cles	1985	85	2089	4.3	0.698	14.3	LOSA	9.4	70.3	0.85	0.78	0.90	42.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Noveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A		BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
South: Livings	tone Rd										
P1 Full	50	53	15.5	LOS B	0.1	0.1	0.86	0.86	180.7	214.8	1.19
East: Marricky	ille Rd										
P2 Full	50	53	15.5	LOS B	0.1	0.1	0.86	0.86	181.0	215.2	1.19

Site: TCS 78 [Old Canterbury Road / New Canterbury Road -

Future Base (Site Folder: AM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	icle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Can	terbury R	d											
30 31 32	L2 T1 R2	31 684 885	1 28 65	33 720 932	3.2 4.1 7.3	0.573 0.573 * 0.820	6.1 1.7 14.6	LOS A LOS B	1.5 1.5 17.8	10.8 10.8 132.1	0.05 0.05 0.49	0.25 0.25 0.74	0.05 0.05 0.52	49.3 50.9 39.7
Appr		1600	94	1684	5.9	0.820	8.9	LOSA	17.8	132.1	0.29	0.52	0.31	43.2
East	: New (Canterbu	ry Rd											
21 22 23	L2 T1 R2	309 194 19	37 4 2	325 204 20	12.0 2.1 10.5	0.267 0.675 0.226	8.9 39.7 53.2	LOS A LOS C LOS D	4.7 8.8 0.9	36.0 62.7 7.0	0.36 0.98 0.99	0.65 0.84 0.69	0.36 1.04 0.99	41.2 25.4 24.1
Appr	oach	522	43	549	8.2	0.675	22.0	LOS B	8.8	62.7	0.61	0.72	0.63	33.0
North	n: Old (Canterbu	ry Rd											
24 25	L2 T1	26 404	2 20	27 425	7.7 5.0	0.918 * 0.918	66.4 57.2	LOS E LOS E	12.2 12.2	89.5 89.5	1.00 1.00	1.14 1.14	1.54 1.54	23.2 19.2
Appr		430	22	453	5.1	0.918	57.7	LOS E	12.2	89.5	1.00	1.14	1.54	19.5
West	t: Griffit	ths St												
27 28 29	L2 T1 R2	16 321 10	2 3 1	17 338 11	12.5 0.9 10.0	0.346 * 0.866 0.866	50.9 47.0 53.7	LOS D LOS D	4.3 12.9 12.9	30.9 91.3 91.3	0.93 0.98 1.00	0.76 0.97 1.05	0.93 1.23 1.35	6.2 23.5 16.3
	oach	347	6	365	1.7	0.866	47.3	LOS D	12.9	91.3	0.98	0.96	1.22	21.3
All Vehic	cles	2899	165	3052	5.7	0.918	23.1	LOS B	17.8	132.1	0.54	0.70	0.66	32.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Canter	bury Rd										
P8 Full	7	7	39.2	LOS D	0.0	0.0	0.93	0.93	65.1	33.7	0.52
East: New Car	nterbury	Rd									
P5 Full	12	13	39.2	LOS D	0.0	0.0	0.93	0.93	66.2	35.1	0.53
North: Old Car	nterbury	Rd									

Site: TCS 78 [Old Canterbury Road / New Canterbury Road -

Construction (Site Folder: AM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
	Turn	INP		DEM		Deg.		Level of		ACK OF		Effective	Aver.	Aver.
ID		VOLU	JMES HV]	FLO [Total	WS HV]	Satn	Delay	Service	QUE [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m m		rtate	Cycles	km/h
Sout	h: Can	terbury R	ld											
30	L2	31	1	33	3.2	0.598	6.1	LOSA	1.6	11.9	0.05	0.25	0.05	49.2
31	T1	701	45	738	6.4	0.598	1.8	LOSA	1.6	11.9	0.05	0.25	0.05	50.9
32	R2	885	65	932	7.3	* 0.839	16.2	LOS B	20.1	149.5	0.54	0.76	0.58	38.6
Appr	oach	1617	111	1702	6.9	0.839	9.7	LOSA	20.1	149.5	0.32	0.53	0.34	42.5
East	New (Canterbu	ry Rd											
21	L2	421	50	443	11.9	0.369	9.7	LOSA	7.3	56.2	0.41	0.67	0.41	40.6
22	T1	263	5	277	1.9	* 0.898	52.3	LOS D	14.4	102.4	1.00	1.11	1.43	22.0
23	R2	19	2	20	10.5	0.251	54.5	LOS D	0.9	7.1	1.00	0.68	1.00	23.8
Appr	oach	703	57	740	8.1	0.898	26.9	LOS B	14.4	102.4	0.64	0.84	0.80	30.7
North	n: Old (Canterbu	ry Rd											
24	L2	26	2	27	7.7	0.908	64.5	LOS E	12.6	94.6	1.00	1.13	1.50	23.6
25	T1	421	37	443	8.8	* 0.908	55.4	LOS D	12.6	94.6	1.00	1.13	1.50	19.6
Appr	oach	447	39	471	8.7	0.908	55.9	LOS D	12.6	94.6	1.00	1.13	1.50	19.9
West	t: Griffit	ths St												
27	L2	16	2	17	12.5	0.358	51.0	LOS D	4.5	32.0	0.93	0.76	0.93	6.2
28	T1	321	3	338	0.9	0.894	49.5	LOS D	13.2	93.5	0.98	1.00	1.29	22.8
29	R2	10	1	11	10.0	0.894	57.4	LOS E	13.2	93.5	1.00	1.10	1.43	15.6
Appr	oach	347	6	365	1.7	0.894	49.8	LOS D	13.2	93.5	0.98	0.99	1.28	20.7
All Vehic	cles	3114	213	3278	6.8	0.908	24.7	LOS B	20.1	149.5	0.56	0.74	0.72	31.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Canter	bury Rd										
P8 Full	7	7	39.2	LOS D	0.0	0.0	0.93	0.93	65.1	33.7	0.52
East: New Car	nterbury	Rd									
P5 Full	12	13	39.2	LOS D	0.0	0.0	0.93	0.93	66.2	35.1	0.53
North: Old Car	nterbury	Rd									

Site: TCS 78 [Old Canterbury Road / New Canterbury Road -

TTP (Site Folder: AM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
	Turn	INP		DEM		Deg.		Level of		ACK OF		Effective	Aver.	Aver.
ID		VOLU	JMES HV]	FLO [Total	WS HV]	Satn	Delay	Service	QUE [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m m		Nate	Cycles	km/h
South	h: Can	terbury R	.d											
30	L2	31	1	33	3.2	0.581	6.1	LOSA	1.7	12.7	0.05	0.25	0.05	49.2
31	T1	701	45	738	6.4	0.581	1.8	LOS A	1.7	12.7	0.05	0.25	0.05	50.9
32	R2	950	130	1000	13.7	* 0.901	19.1	LOS B	27.4	214.4	0.55	0.79	0.63	36.9
Appr	oach	1682	176	1771	10.5	0.901	11.6	LOSA	27.4	214.4	0.33	0.55	0.38	41.0
East:	New (Canterbu	ry Rd											
21	L2	486	115	512	23.7	0.463	10.2	LOSA	9.8	82.2	0.43	0.69	0.43	39.3
22	T1	263	5	277	1.9	0.928	62.8	LOS E	16.7	118.6	1.00	1.16	1.49	19.7
23	R2	19	2	20	10.5	0.315	61.7	LOS E	1.1	8.1	1.00	0.67	1.00	22.3
Appr	oach	768	122	808	15.9	0.928	29.5	LOS C	16.7	118.6	0.64	0.85	0.81	29.3
North	n: Old (Canterbu	ry Rd											
24	L2	26	2	27	7.7	0.937	76.7	LOS F	14.5	109.4	1.00	1.18	1.56	21.4
25	T1	421	37	443	8.8	* 0.937	66.4	LOS E	14.5	109.4	1.00	1.18	1.56	17.4
Appr	oach	447	39	471	8.7	0.937	67.0	LOS E	14.5	109.4	1.00	1.18	1.56	17.7
West	:: Griffit	ths St												
27	L2	16	2	17	12.5	0.389	55.8	LOS D	5.2	37.6	0.94	0.77	0.94	6.1
28	T1	321	3	338	0.9	* 0.974	68.4	LOS E	16.6	117.6	0.98	1.11	1.48	18.9
29	R2	10	1	11	10.0	0.974	82.0	LOS F	16.6	117.6	1.00	1.26	1.70	11.8
Appr	oach	347	6	365	1.7	0.974	68.2	LOS E	16.6	117.6	0.98	1.10	1.46	17.5
All Vehic	cles	3244	343	3415	10.6	0.974	29.6	LOS C	27.4	214.4	0.57	0.77	0.76	29.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	VERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Canter	bury Rd										
P8 Full	7	7	43.3	LOS E	0.0	0.0	0.93	0.93	69.2	33.7	0.49
East: New Car	nterbury	Rd									
P5 Full	12	13	44.2	LOS E	0.0	0.0	0.94	0.94	71.2	35.1	0.49
North: Old Car	nterbury	Rd									

Site: TCS 78 [Old Canterbury Road / New Canterbury Road -

Future Base (Site Folder: PM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	icle M	ovemen	t Perfor	mance										
	Turn	INF		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU	JMES HV]	FLO [Total	WS HV1	Satn	Delay	Service	QUE [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m m		Male	Cycles	km/h
Sout	h: Can	terbury R	.d											
30	L2	23	0	24	0.0	0.553	6.6	LOSA	2.1	15.0	0.09	0.27	0.09	48.5
31	T1	558	11	587	2.0	0.553	2.4	LOSA	2.1	15.0	0.09	0.27	0.09	50.0
32	R2	491	18	517	3.7	* 0.733	27.6	LOS B	14.1	102.0	0.78	0.80	0.80	31.9
Appr	oach	1072	29	1128	2.7	0.733	14.1	LOSA	14.1	102.0	0.40	0.51	0.41	38.4
East	: New (Canterbu	ry Rd											
21	L2	652	28	686	4.3	0.587	13.9	LOSA	16.7	121.5	0.61	0.76	0.61	38.2
22	T1	441	6	464	1.4	* 0.900	46.6	LOS D	23.9	169.1	1.00	1.13	1.33	23.4
23	R2	32	2	34	6.3	0.200	44.9	LOS D	1.4	10.3	0.93	0.73	0.93	26.2
Appr	oach	1125	36	1184	3.2	0.900	27.6	LOS B	23.9	169.1	0.77	0.90	0.90	30.6
North	n: Old (Canterbu	ry Rd											
24	L2	37	0	39	0.0	0.908	56.5	LOS E	19.6	138.6	1.00	1.14	1.40	24.4
25	T1	659	10	694	1.5	* 0.908	52.0	LOS D	19.6	138.6	1.00	1.14	1.40	20.4
Appr	oach	696	10	733	1.4	0.908	52.2	LOS D	19.6	138.6	1.00	1.14	1.40	20.7
West	t: Griffit	ths St												
27	L2	9	0	9	0.0	0.222	40.2	LOS C	4.1	29.1	0.80	0.68	0.80	6.5
28	T1	267	3	281	1.1	0.554	33.1	LOS C	7.7	54.6	0.89	0.74	0.89	27.6
29	R2	20	0	21	0.0	0.554	41.2	LOS C	7.7	54.6	0.96	0.79	0.96	19.9
Appr	oach	296	3	312	1.0	0.554	33.9	LOS C	7.7	54.6	0.89	0.74	0.89	25.3
All Vehic	cles	3189	78	3357	2.4	0.908	29.0	LOSC	23.9	169.1	0.71	0.81	0.85	29.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Noveme	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
South: Canter	bury Rd										
P8 Full	7	7	29.6	LOS C	0.0	0.0	0.81	0.81	55.5	33.7	0.61
East: New Car	nterbury	Rd									
P5 Full	12	13	36.5	LOS D	0.0	0.0	0.90	0.90	63.5	35.1	0.55
North: Old Car	nterbury	Rd									

Site: TCS 78 [Old Canterbury Road / New Canterbury Road -

Construction (Site Folder: PM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	icle M	ovemen	t Perfor	mance										
	Turn	INF		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU	JMES HV]	FLO [Total	WS HV1	Satn	Delay	Service	QUE [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m m		Male	Cycles	km/h
Sout	h: Can	terbury R	.d											
30	L2	23	0	24	0.0	0.607	7.9	LOSA	4.6	33.8	0.18	0.34	0.18	46.1
31	T1	575	28	605	4.9	0.607	3.7	LOSA	4.6	33.8	0.18	0.34	0.18	48.2
32	R2	491	18	517	3.7	* 0.825	32.9	LOS C	16.4	118.3	0.87	0.85	0.94	29.7
Appr	oach	1089	46	1146	4.2	0.825	16.9	LOS B	16.4	118.3	0.49	0.57	0.52	36.3
East	: New (Canterbu	ry Rd											
21	L2	703	31	740	4.4	0.645	15.0	LOS B	19.6	142.6	0.66	0.78	0.66	37.5
22	T1	475	7	500	1.5	* 0.898	44.9	LOS D	25.5	180.8	1.00	1.11	1.30	23.9
23	R2	32	2	34	6.3	0.184	43.7	LOS D	1.4	10.2	0.92	0.73	0.92	26.5
Appr	oach	1210	40	1274	3.3	0.898	27.5	LOS B	25.5	180.8	0.80	0.91	0.92	30.6
North	n: Old (Canterbu	ry Rd											
24	L2	37	0	39	0.0	0.902	55.2	LOS D	19.9	143.4	1.00	1.13	1.38	24.7
25	T1	676	27	712	4.0	* 0.902	50.7	LOS D	19.9	143.4	1.00	1.13	1.38	20.7
Appr	oach	713	27	751	3.8	0.902	50.9	LOS D	19.9	143.4	1.00	1.13	1.38	21.0
West	t: Griffit	ths St												
27	L2	9	0	9	0.0	0.209	38.6	LOS C	4.0	28.5	0.78	0.67	0.78	6.6
28	T1	267	3	281	1.1	0.521	31.7	LOS C	7.5	53.2	0.87	0.73	0.87	28.1
29	R2	20	0	21	0.0	0.521	40.1	LOS C	7.5	53.2	0.94	0.78	0.94	20.3
Appr	oach	296	3	312	1.0	0.521	32.5	LOS C	7.5	53.2	0.88	0.73	0.88	25.8
All Vehic	cles	3308	116	3482	3.5	0.902	29.5	LOS C	25.5	180.8	0.75	0.83	0.88	29.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Canterl	oury Rd										
P8 Full	7	7	28.0	LOS C	0.0	0.0	0.79	0.79	53.9	33.7	0.62
East: New Car	nterbury	Rd									
P5 Full	12	13	35.6	LOS D	0.0	0.0	0.89	0.89	62.6	35.1	0.56
North: Old Car	nterbury	Rd									

Site: TCS 78 [Old Canterbury Road / New Canterbury Road -

TTP (Site Folder: PM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
	Turn		PUT	DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU	JMES HV]	FLO [Total	WS HV1	Satn	Delay	Service	QUE [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m m		itate	Cycles	km/h
South	h: Can	terbury R	.d											
30	L2	23	0	24	0.0	0.581	6.7	LOSA	2.3	16.8	0.08	0.27	0.08	48.5
31	T1	575	28	605	4.9	0.581	2.4	LOSA	2.3	16.8	0.08	0.27	80.0	50.0
32	R2	556	83	585	14.9	* 0.928	40.5	LOS C	24.3	192.2	0.91	0.92	1.09	27.0
Appr	oach	1154	111	1215	9.6	0.928	20.9	LOS B	24.3	192.2	0.48	0.58	0.57	33.9
East:	New (Canterbu	ry Rd											
21	L2	768	96	808	12.5	0.746	16.8	LOS B	26.2	203.0	0.73	0.81	0.73	35.9
22	T1	475	7	500	1.5	* 0.930	56.4	LOS D	30.2	213.7	1.00	1.18	1.38	21.0
23	R2	32	2	34	6.3	0.215	50.5	LOS D	1.6	11.6	0.95	0.73	0.95	24.7
Appr	oach	1275	105	1342	8.2	0.930	32.4	LOS C	30.2	213.7	0.83	0.95	0.97	28.5
North	n: Old (Canterbu	ry Rd											
24	L2	37	0	39	0.0	0.912	61.3	LOS E	22.1	159.8	1.00	1.14	1.37	23.3
25	T1	676	27	712	4.0	* 0.912	56.8	LOS E	22.1	159.8	1.00	1.14	1.37	19.3
Appr	oach	713	27	751	3.8	0.912	57.0	LOS E	22.1	159.8	1.00	1.14	1.37	19.5
West	:: Griffit	ths St												
27	L2	9	0	9	0.0	0.228	42.3	LOS C	4.8	34.1	0.79	0.68	0.79	6.5
28	T1	267	3	281	1.1	0.571	36.6	LOS C	8.3	58.3	0.89	0.74	0.89	26.4
29	R2	20	0	21	0.0	0.571	46.1	LOS D	8.3	58.3	0.96	0.79	0.96	18.4
Appr	oach	296	3	312	1.0	0.571	37.4	LOS C	8.3	58.3	0.89	0.74	0.89	24.3
All Vehic	cles	3438	246	3619	7.2	0.930	34.1	LOS C	30.2	213.7	0.75	0.85	0.91	27.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Canter	bury Rd										
P8 Full	7	7	31.2	LOS D	0.0	0.0	0.79	0.79	57.1	33.7	0.59
East: New Car	nterbury	Rd									
P5 Full	12	13	38.7	LOS D	0.0	0.0	0.88	0.88	65.7	35.1	0.53
North: Old Car	nterbury	Rd									

Site: TCS 79 [H.13 Canterbury Road / Beamish Street - Future

Base (Site Folder: AM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 55 seconds (Site Optimum Cycle Time - Minimum

Delay)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total		DEM/ FLO		Deg. Satn		Level of Service	95% BA QUE [Veh.		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m		. 15.15		km/h
Sout	h: Bexl	ey Rd												
1	L2	84	8	88	9.5	* 0.535	26.2	LOS B	6.6	48.9	0.94	0.82	0.94	42.4
2	T1	582	26	613	4.5	* 0.713	22.9	LOS B	10.7	77.6	0.97	0.86	1.02	43.5
3	R2	391	13	412	3.3	0.763	30.5	LOS C	11.4	82.0	1.00	0.90	1.15	39.2
Appr	oach	1057	47	1113	4.4	0.763	26.0	LOS B	11.4	82.0	0.98	0.87	1.06	41.7
East	Cante	rbury Rd												
4	L2	240	15	253	6.3	0.711	25.8	LOS B	11.4	84.4	0.94	0.82	0.97	42.4
5	T1	646	49	680	7.6	* 0.711	20.1	LOS B	11.6	86.7	0.94	0.81	0.97	44.2
Appr	oach	886	64	933	7.2	0.711	21.7	LOS B	11.6	86.7	0.94	0.81	0.97	43.7
North	n: Bear	nish St												
7	L2	47	1	49	2.1	0.696	28.0	LOS B	5.8	43.1	0.99	0.91	1.12	42.8
8	T1	396	38	417	9.6	0.773	25.4	LOS B	6.4	48.4	1.00	0.92	1.20	42.1
9	R2	89	13	94	14.6	* 0.440	32.4	LOS C	2.5	20.0	0.98	0.76	0.98	37.8
Appr	oach	532	52	560	9.8	0.773	26.8	LOS B	6.4	48.4	0.99	0.89	1.16	41.4
West	: Cant	erbury Ro	d											
10	L2	63	10	66	15.9	0.369	16.1	LOS B	8.0	59.3	0.57	0.52	0.57	49.4
11	T1	1150	69	1211	6.0	0.462	10.3	LOSA	11.4	83.6	0.61	0.54	0.61	50.9
12	R2	217	14	228	6.5	0.428	30.1	LOS C	5.8	42.9	0.97	0.78	0.97	38.9
Appr	oach	1430	93	1505	6.5	0.462	13.5	LOSA	11.4	83.6	0.66	0.57	0.66	48.6
All Vehic	cles	3905	256	4111	6.6	0.773	20.6	LOS B	11.6	86.7	0.86	0.75	0.91	44.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian	Movem	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE	EUE	Prop. Et Que	Stop	Travel Time		Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
South: Bexle	y Rd										
P1 Full	1	1	21.8	LOS C	0.0	0.0	0.89	0.89	49.5	36.0	0.73
East: Canter	bury Rd										
P2 Full	21	22	21.8	LOS C	0.0	0.0	0.89	0.89	49.5	36.0	0.73

Site: TCS 79 [H.13 Canterbury Road / Beamish Street -

Construction (Site Folder: AM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 55 seconds (Site Optimum Cycle Time - Minimum

Delay)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Bexl													
1	L2	84	8	88	9.5	* 0.535	26.2	LOS B	6.6	48.9	0.94	0.82	0.94	42.4
2	T1	582	26	613	4.5	* 0.713	22.9	LOS B	10.7	77.6	0.97	0.86	1.02	43.5
3	R2	391	13	412	3.3	0.763	30.5	LOS C	11.4	82.0	1.00	0.90	1.15	39.2
Appr	oach	1057	47	1113	4.4	0.763	26.0	LOS B	11.4	82.0	0.98	0.87	1.06	41.7
East	Cante	rbury Rd												
4	L2	240	15	253	6.3	0.711	25.8	LOS B	11.4	84.4	0.94	0.82	0.97	42.4
5	T1	646	49	680	7.6	* 0.711	20.1	LOS B	11.6	86.7	0.94	0.81	0.97	44.2
Appr	oach	886	64	933	7.2	0.711	21.7	LOS B	11.6	86.7	0.94	0.81	0.97	43.7
North	n: Bear	nish St												
7	L2	47	1	49	2.1	0.696	28.0	LOS B	5.8	43.1	0.99	0.91	1.12	42.8
8	T1	396	38	417	9.6	0.773	25.4	LOS B	6.4	48.4	1.00	0.92	1.20	42.1
9	R2	89	13	94	14.6	* 0.440	32.4	LOS C	2.5	20.0	0.98	0.76	0.98	37.8
Appr	oach	532	52	560	9.8	0.773	26.8	LOS B	6.4	48.4	0.99	0.89	1.16	41.4
West	:: Cant	erbury Ro	d											
10	L2	63	10	66	15.9	0.369	16.1	LOS B	8.0	59.3	0.57	0.52	0.57	49.4
11	T1	1150	69	1211	6.0	0.462	10.3	LOSA	11.4	83.6	0.61	0.54	0.61	50.9
12	R2	217	14	228	6.5	0.428	30.1	LOS C	5.8	42.9	0.97	0.78	0.97	38.9
Appr	oach	1430	93	1505	6.5	0.462	13.5	LOSA	11.4	83.6	0.66	0.57	0.66	48.6
All Vehic	cles	3905	256	4111	6.6	0.773	20.6	LOS B	11.6	86.7	0.86	0.75	0.91	44.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian	Movem	ent Perf	orman	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m ¹			sec	m	m/sec
South: Bexle	y Rd										
P1 Full	1	1	21.8	LOS C	0.0	0.0	0.89	0.89	49.5	36.0	0.73
East: Canter	bury Rd										
P2 Full	21	22	21.8	LOS C	0.0	0.0	0.89	0.89	49.5	36.0	0.73

Site: TCS 79 [H.13 Canterbury Road / Beamish Street - TTP

(Site Folder: AM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum

Delay)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehicle Movement Performance														
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Bexl													
1	L2	84	8	88	9.5	* 0.593	25.1	LOS B	6.2	45.9	0.96	0.83	0.96	43.0
2	T1	582	26	613	4.5	* 0.790	22.9	LOS B	10.4	75.9	0.99	0.91	1.13	43.5
3	R2	391	13	412	3.3	0.847	32.3	LOS C	11.4	82.3	1.00	0.98	1.35	38.5
Appr	oach	1057	47	1113	4.4	0.847	26.6	LOS B	11.4	82.3	0.99	0.93	1.20	41.5
East	Cante	rbury Rd												
4	L2	240	15	253	6.3	0.814	26.6	LOS B	11.4	84.7	0.99	0.89	1.11	42.1
5	T1	650	53	684	8.2	* 0.814	20.9	LOS B	11.6	87.0	0.99	0.89	1.11	43.7
Appr	oach	890	68	937	7.6	0.814	22.4	LOS B	11.6	87.0	0.99	0.89	1.11	43.2
North	n: Bear	nish St												
7	L2	85	39	89	45.9	0.685	21.9	LOS B	4.5	37.2	0.98	0.91	1.10	45.1
8	T1	396	38	417	9.6	0.761	21.1	LOS B	6.3	47.8	0.99	0.92	1.19	44.3
9	R2	89	13	94	14.6	* 0.400	29.4	LOS C	2.3	18.0	0.96	0.76	0.96	39.1
Appr	oach	570	90	600	15.8	0.761	22.5	LOS B	6.3	47.8	0.98	0.89	1.14	43.6
West	: Cante	erbury Ro	i											
10	L2	63	10	66	15.9	0.405	16.2	LOS B	8.0	60.7	0.61	0.55	0.61	49.4
11	T1	1182	101	1244	8.5	0.507	10.3	LOSA	11.4	85.8	0.65	0.57	0.65	50.9
12	R2	217	14	228	6.5	0.454	28.4	LOS B	5.4	39.6	0.97	0.78	0.97	39.7
Appr	oach	1462	125	1539	8.5	0.507	13.3	LOSA	11.4	85.8	0.70	0.60	0.70	48.8
All Vehic	cles	3979	330	4188	8.3	0.847	20.2	LOS B	11.6	87.0	0.88	0.80	0.99	44.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian	Pedestrian Movement Performance												
Mov ID Crossing	Input Vol.			Level of AVERAGE BACK OF Service QUEUE [Ped Dist]			Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Travel Aver. Dist. Speed		
	ped/h	ped/h	sec		ped	m ¹			sec	m	m/sec		
South: Bexley	y Rd												
P1 Full	1	1	19.4	LOS B	0.0	0.0	0.88	0.88	47.1	36.0	0.77		
East: Canterbury Rd													
P2 Full	21	22	19.4	LOS B	0.0	0.0	0.88	0.88	47.1	36.0	0.76		

Site: TCS 79 [H.13 Canterbury Road / Beamish Street - Future

Base (Site Folder: PM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 60 seconds (Site Optimum Cycle Time - Minimum

Delay)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehicle Movement Performance														
Mov ID	Turn	INP VOLU	IMES	DEM/ FLO	WS	Deg. Satn		Level of Service	Service QUEUE		Que Stop			Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South: Bexley Rd														
1	L2	85	0	89	0.0	* 0.328	22.2	LOS B	4.2	30.3	0.86	0.76	0.86	44.4
2	T1	401	15	422	3.7	0.437	20.2	LOS B	7.4	53.1	0.89	0.75	0.89	44.8
3	R2	363	5	382	1.4	* 0.834	24.8	LOS B	8.6	61.2	1.00	0.93	1.28	41.8
Appr	oach	849	20	894	2.4	0.834	22.3	LOS B	8.6	61.2	0.93	0.83	1.05	43.4
East:	Cante	rbury Rd												
4	L2	172	4	181	2.3	0.837	28.2	LOS B	17.9	129.5	0.98	0.90	1.08	42.1
5	T1	1015	46	1068	4.5	* 0.837	22.6	LOS B	18.1	131.3	0.98	0.90	1.08	43.0
Appr	oach	1187	50	1249	4.2	0.837	23.4	LOS B	18.1	131.3	0.98	0.90	1.08	42.8
North	n: Bear	nish St												
7	L2	45	5	47	11.1	0.705	29.0	LOS C	5.2	38.3	1.00	0.90	1.15	42.2
8	T1	335	14	353	4.2	* 0.783	27.9	LOS B	6.1	43.9	1.00	0.91	1.23	41.0
9	R2	138	10	145	7.2	0.598	34.9	LOS C	4.4	32.4	0.99	0.81	1.05	36.9
Appr	oach	518	29	545	5.6	0.783	29.8	LOS C	6.1	43.9	1.00	0.88	1.17	40.0
West	:: Cant	erbury Ro	ł											
10	L2	95	7	100	7.4	0.332	17.3	LOS B	7.9	56.7	0.58	0.54	0.58	48.3
11	T1	989	14	1041	1.4	0.415	11.9	LOSA	11.1	78.8	0.62	0.55	0.62	49.6
12	R2	192	6	202	3.1	0.467	33.9	LOS C	5.8	41.4	0.99	0.78	0.99	37.4
Appr	oach	1276	27	1343	2.1	0.467	15.6	LOS B	11.1	78.8	0.67	0.58	0.67	47.2
All Vehic	cles	3830	126	4032	3.3	0.837	21.4	LOS B	18.1	131.3	0.87	0.78	0.95	43.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian	Pedestrian Movement Performance												
Mov	Input	Dem.	Aver.	Level of AVERAGE BACK OF			Prop. Effective		Travel	Travel	Aver.		
ID Crossing	^{SING} Vol. Flow Delay Service QUEUE [Ped Dist]					Que	Stop Rate	Time	Dist. S	Speed			
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec		
South: Bexley	/ Rd												
P1 Full	1	1	24.3	LOS C	0.0	0.0	0.90	0.90	52.0	36.0	0.69		
East: Canterbury Rd													
P2 Full	21	22	24.3	LOS C	0.0	0.0	0.90	0.90	52.0	36.0	0.69		

Site: TCS 79 [H.13 Canterbury Road / Beamish Street -

Construction (Site Folder: PM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 60 seconds (Site Optimum Cycle Time - Minimum

Delay)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU	IMES	DEM/ FLO	WS	Deg. Satn		Level of Service	95% BA Que	EUE	Prop. Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	h: Bexl	ey Rd												
1	L2	85	0	89	0.0	* 0.328	22.2	LOS B	4.2	30.3	0.86	0.76	0.86	44.4
2	T1	401	15	422	3.7	0.437	20.2	LOS B	7.4	53.1	0.89	0.75	0.89	44.8
3	R2	363	5	382	1.4	* 0.834	24.8	LOS B	8.6	61.2	1.00	0.93	1.28	41.8
Appr	oach	849	20	894	2.4	0.834	22.3	LOS B	8.6	61.2	0.93	0.83	1.05	43.4
East:	Cante	rbury Rd												
4	L2	172	4	181	2.3	0.837	28.2	LOS B	17.9	129.5	0.98	0.90	1.08	42.1
5	T1	1015	46	1068	4.5	* 0.837	22.6	LOS B	18.1	131.3	0.98	0.90	1.08	43.0
Appr	oach	1187	50	1249	4.2	0.837	23.4	LOS B	18.1	131.3	0.98	0.90	1.08	42.8
North	n: Bear	nish St												
7	L2	45	5	47	11.1	0.705	29.0	LOS C	5.2	38.3	1.00	0.90	1.15	42.2
8	T1	335	14	353	4.2	* 0.783	27.9	LOS B	6.1	43.9	1.00	0.91	1.23	41.0
9	R2	138	10	145	7.2	0.598	34.9	LOS C	4.4	32.4	0.99	0.81	1.05	36.9
Appr	oach	518	29	545	5.6	0.783	29.8	LOS C	6.1	43.9	1.00	0.88	1.17	40.0
West	:: Cant	erbury Ro	ł											
10	L2	95	7	100	7.4	0.332	17.3	LOS B	7.9	56.7	0.58	0.54	0.58	48.3
11	T1	989	14	1041	1.4	0.415	11.9	LOSA	11.1	78.8	0.62	0.55	0.62	49.6
12	R2	192	6	202	3.1	0.467	33.9	LOS C	5.8	41.4	0.99	0.78	0.99	37.4
Appr	oach	1276	27	1343	2.1	0.467	15.6	LOS B	11.1	78.8	0.67	0.58	0.67	47.2
All Vehic	cles	3830	126	4032	3.3	0.837	21.4	LOS B	18.1	131.3	0.87	0.78	0.95	43.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian	Movem	ent Perf	ormano	се							
Mov	Input	Dem.	Aver.			BACK OF	Prop. Ef		Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	:UE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
South: Bexley	/ Rd										
P1 Full	1	1	24.3	LOS C	0.0	0.0	0.90	0.90	52.0	36.0	0.69
East: Canterb	oury Rd										
P2 Full	21	22	24.3	LOS C	0.0	0.0	0.90	0.90	52.0	36.0	0.69

Site: TCS 79 [H.13 Canterbury Road / Beamish Street - TTP

(Site Folder: PM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 55 seconds (Site Optimum Cycle Time - Minimum

Delay)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Bexl	ey Rd												
1	L2	85	0	89	0.0	* 0.521	25.4	LOS B	4.6	32.9	0.96	0.82	0.96	42.7
2	T1	401	15	422	3.7	* 0.694	24.2	LOS B	7.8	56.5	0.99	0.85	1.05	42.7
3	R2	363	5	382	1.4	0.849	35.1	LOS C	11.6	82.1	1.00	0.97	1.34	37.4
Appr	oach	849	20	894	2.4	0.849	29.0	LOS C	11.6	82.1	0.99	0.90	1.17	40.3
East	Cante	rbury Rd												
4	L2	172	4	181	2.3	0.741	22.8	LOS B	15.1	111.0	0.91	0.81	0.94	44.8
5	T1	1043	74	1098	7.1	* 0.741	17.2	LOS B	15.1	112.4	0.91	0.80	0.94	46.0
Appr	oach	1215	78	1279	6.4	0.741	18.0	LOS B	15.1	112.4	0.91	0.80	0.94	45.8
North	n: Bear	nish St												
7	L2	57	17	60	29.8	0.655	22.8	LOS B	4.1	31.9	0.99	0.87	1.09	45.0
8	T1	335	14	353	4.2	0.728	23.0	LOS B	5.7	41.2	1.00	0.88	1.15	43.3
9	R2	138	10	145	7.2	* 0.640	33.5	LOS C	4.1	30.5	1.00	0.83	1.12	37.5
Appr	oach	530	41	558	7.7	0.728	25.7	LOS B	5.7	41.2	1.00	0.87	1.14	41.8
West	: Cante	erbury Ro	t											
10	L2	95	7	100	7.4	0.286	13.1	LOSA	5.7	41.1	0.45	0.45	0.45	51.2
11	T1	999	24	1052	2.4	0.358	7.5	LOSA	8.2	58.3	0.49	0.44	0.49	52.9
12	R2	192	6	202	3.1	0.367	29.8	LOS C	5.1	36.5	0.96	0.77	0.96	39.1
Appr	oach	1286	37	1354	2.9	0.367	11.2	LOSA	8.2	58.3	0.56	0.49	0.56	50.1
All Vehic	cles	3880	176	4084	4.5	0.849	19.2	LOS B	15.1	112.4	0.82	0.73	0.89	45.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian	Movem	ent Perl	forman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE Que		Prop. Ef Que	ffective Stop	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
South: Bexley	y Rd										
P1 Full	1	1	21.8	LOS C	0.0	0.0	0.89	0.89	49.5	36.0	0.73
East: Canterl	oury Rd										
P2 Full	21	22	21.8	LOS C	0.0	0.0	0.89	0.89	49.5	36.0	0.73

Site: TCS 81 [Livingstone Rd / Sydenham Rd / Frazer St -

Future Base (Site Folder: AM)]

Livingstone Rd / Sydenham Rd / Frazer St

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 60 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Livin	igstone R	d											
1a	L1	24	2	25	8.3	0.580	24.2	LOS B	8.1	58.0	0.91	0.77	0.91	38.8
2	T1	481	10	506	2.1	0.580	21.2	LOS B	8.1	58.0	0.92	0.77	0.92	36.6
3b	R3	28	0	29	0.0	0.580	27.5	LOS B	6.7	47.4	0.93	0.78	0.93	35.4
Appro	oach	533	12	561	2.3	0.580	21.7	LOS B	8.1	58.0	0.92	0.77	0.92	36.7
South	nEast:	Sydenha	m Rd											
21b	L3	17	1	18	5.9	0.205	16.2	LOS B	3.1	22.3	0.61	0.53	0.61	43.7
22	T1	155	7	163	4.5	0.205	9.8	LOS A	3.1	22.3	0.61	0.53	0.61	47.0
23a	R1	302	31	318	10.3	* 0.773	30.8	LOS C	9.9	75.1	0.98	0.95	1.19	26.8
Appro	oach	474	39	499	8.2	0.773	23.4	LOS B	9.9	75.1	0.85	0.80	0.98	33.1
North	: Livin	gstone R	b											
7a	L1	360	37	379	10.3	0.327	9.3	LOSA	4.7	36.1	0.46	0.70	0.46	40.7
8	T1	209	7	220	3.3	* 0.753	28.0	LOS B	8.7	62.1	0.99	0.93	1.17	33.0
9b	R3	59	0	62	0.0	0.753	33.2	LOS C	8.7	62.1	0.99	0.93	1.17	32.1
Appro	oach	628	44	661	7.0	0.753	17.8	LOS B	8.7	62.1	0.68	0.80	0.76	36.0
North	West:	Frazer S	t											
27b	L3	128	4	135	3.1	0.577	18.1	LOS B	4.3	30.9	0.90	0.78	0.90	42.2
28	T1	213	4	224	1.9	* 0.577	20.7	LOS B	4.3	30.9	0.95	0.79	0.98	37.5
Appro	oach	341	8	359	2.3	0.577	19.7	LOS B	4.3	30.9	0.93	0.79	0.95	39.1
All Vehic	eles	1976	103	2080	5.2	0.773	20.5	LOS B	9.9	75.1	0.83	0.79	0.89	36.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Livings	tone Rd										
P1 Full	50	53	24.4	LOS C	0.1	0.1	0.90	0.90	189.9	215.2	1.13
SouthEast: Sy	denham	Rd									
P5 Full	50	53	24.4	LOS C	0.1	0.1	0.90	0.90	189.9	215.2	1.13
North: Livings	one Rd										

Site: TCS 81 [Livingstone Rd / Sydenham Rd / Frazer St -

Construction (Site Folder: AM)]

Livingstone Rd / Sydenham Rd / Frazer St

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 60 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Livin	gstone R	Rd											
1a	L1	24	2	25	8.3	0.580	24.2	LOS B	8.1	58.0	0.91	0.77	0.91	38.8
2	T1	481	10	506	2.1	0.580	21.2	LOS B	8.1	58.0	0.92	0.77	0.92	36.6
3b	R3	28	0	29	0.0	0.580	27.5	LOS B	6.7	47.4	0.93	0.78	0.93	35.4
Appro	oach	533	12	561	2.3	0.580	21.7	LOS B	8.1	58.0	0.92	0.77	0.92	36.7
South	nEast:	Sydenha	ım Rd											
21b	L3	17	1	18	5.9	0.205	16.2	LOS B	3.1	22.3	0.61	0.53	0.61	43.7
22	T1	155	7	163	4.5	0.205	9.8	LOSA	3.1	22.3	0.61	0.53	0.61	47.0
23a	R1	302	31	318	10.3	* 0.773	30.8	LOS C	9.9	75.1	0.98	0.95	1.19	26.8
Appro	oach	474	39	499	8.2	0.773	23.4	LOS B	9.9	75.1	0.85	0.80	0.98	33.1
North	: Livin	gstone R	d											
7a	L1	360	37	379	10.3	0.327	9.3	LOSA	4.7	36.1	0.46	0.70	0.46	40.7
8	T1	209	7	220	3.3	* 0.753	28.0	LOS B	8.7	62.1	0.99	0.93	1.17	33.0
9b	R3	59	0	62	0.0	0.753	33.2	LOS C	8.7	62.1	0.99	0.93	1.17	32.1
Appro	oach	628	44	661	7.0	0.753	17.8	LOS B	8.7	62.1	0.68	0.80	0.76	36.0
North	West:	Frazer S	t											
27b	L3	128	4	135	3.1	0.577	18.1	LOS B	4.3	30.9	0.90	0.78	0.90	42.2
28	T1	213	4	224	1.9	* 0.577	20.7	LOS B	4.3	30.9	0.95	0.79	0.98	37.5
Appro	oach	341	8	359	2.3	0.577	19.7	LOS B	4.3	30.9	0.93	0.79	0.95	39.1
All Vehic	eles	1976	103	2080	5.2	0.773	20.5	LOS B	9.9	75.1	0.83	0.79	0.89	36.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov _	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE		Que	Stop	Time	Dist. S	Speed
		1.0			[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Livings	tone Rd										
P1 Full	50	53	24.4	LOS C	0.1	0.1	0.90	0.90	189.9	215.2	1.13
SouthEast: Sy	denham	Rd									
P5 Full	50	53	24.4	LOS C	0.1	0.1	0.90	0.90	189.9	215.2	1.13
North: Livings	one Rd										

Site: TCS 81 [Livingstone Rd / Sydenham Rd / Frazer St - TTP

(Site Folder: AM)]

Livingstone Rd / Sydenham Rd / Frazer St

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle Mo	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	ı: Livin	gstone R	d											
1a 2 3b	L1 T1 R3	24 481 28	2 10 0	25 506 29	8.3 2.1 0.0	0.676 0.676 0.676	24.1 20.8 26.8	LOS B LOS B	7.4 7.4 6.2	53.0 53.0 44.3	0.96 0.96 0.97	0.86 0.86 0.87	1.05 1.06 1.08	38.9 36.8 35.7
Appro	ach	533	12	561	2.3	0.676	21.3	LOS B	7.4	53.0	0.96	0.86	1.06	36.8
South	East:	Sydenha	m Rd											
21b 22 23a Appro North 7a 8 9b		17 155 302 474 gstone R 360 209 59	1 7 31 39 d 37 7	18 163 318 499 379 220 62	5.9 4.5 10.3 8.2 10.3 3.3 0.0	0.207 0.207 * 0.879 0.879 0.363 * 0.883 0.883	14.7 8.3 35.0 25.6 10.3 32.7 37.9	LOS B LOS C LOS B LOS A LOS C LOS C	2.6 2.6 9.8 9.8 4.8 8.8 8.8	18.8 18.8 74.9 74.9 36.5 63.1 63.1	0.61 0.61 1.00 0.86 0.55 1.00	0.53 0.53 1.11 0.90 0.73 1.10 1.10	0.61 0.61 1.56 1.22 0.55 1.62	44.7 48.5 25.0 31.9 39.6 31.1 30.0
Appro		628	44	661	7.0	0.883	20.3	LOS B	8.8	63.1	0.74	0.89	1.00	34.4
27b 28	L3	Frazer S 128 270	4 61	135 284	3.1 22.6	0.703 * 0.703	19.1 19.1	LOS B	5.0 5.0	39.1 39.1	0.96 0.98	0.87 0.87	1.10 1.17	41.6 38.5
Appro		398 2033	65 160	419 2140	16.3 7.9	0.703 0.883	19.1 21.6	LOS B	5.0 9.8	39.1 74.9	0.97	0.87	1.15	39.4 35.5
VEHIL	163													

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Livings	tone Rd										
P1 Full	50	53	19.4	LOS B	0.1	0.1	0.88	0.88	184.9	215.2	1.16
SouthEast: Sy	denham	Rd									
P5 Full	50	53	19.4	LOS B	0.1	0.1	0.88	0.88	184.9	215.2	1.16
North: Livings	one Rd										

Site: TCS 86 [New Canterbury Road / Marrickville Road -

Future Base (Site Folder: PM)]

New Canterbury Road / Marrickville Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: New	Canterb	ury Rd											
10 11	L2 T1	6 595	1 13	6 626	16.7 2.2	0.461 0.461	6.7 1.0	LOS A	2.2	15.6 15.6	0.08	0.08	0.08	48.8 56.0
12 Appro	R2 pach	211 812	5 19	855	2.4	* 0.612 0.612	45.7 12.7	LOS D	9.7	69.5 69.5	0.93	0.81	0.93	22.5 33.5
East:	Marrio	kville Rd												
1 2	L2 T1	336 64	14 0	354 67	4.2 0.0	0.609	26.0 46.5	LOS B	12.5 6.0	90.4 42.1	0.77	0.77 0.81	0.77 1.01	27.4 24.0
3 Appro	R2 pach	54 454	14	57 478	3.1	* 0.595 0.609	49.9 31.7	LOS D	6.0 12.5	42.1 90.4	0.99	0.81	0.83	21.5
North	: New	Canterbu	ıry Rd											
4 5 6	L2 T1 R2	75 943 1	0 22 1	79 993 1	0.0 2.3 100.0	* 0.637 0.637 0.637	41.2 35.4 41.8	LOS C LOS C LOS C	24.3 24.8 24.8	172.8 177.3 177.3	1.00 1.00 1.00	0.89 0.89 0.89	1.00 1.00 1.00	25.1 17.9 21.4
Appro	oach	1019	23	1073	2.3	0.637	35.8	LOS C	24.8	177.3	1.00	0.89	1.00	18.8
West	: Dulwi	ich St												
7 8 9	L2 T1 R2	17 60 3	0 7 0	18 63 3	0.0 11.7 0.0	0.088 0.264 0.264	48.8 43.0 46.3	LOS D LOS D	0.8 3.0 3.0	5.6 22.6 22.6	0.93 0.92 0.92	0.69 0.73 0.73	0.93 0.92 0.92	17.9 25.0 18.9
Appro		80	7	84	8.8	0.264	44.4	LOS D	3.0	22.6	0.93	0.72	0.93	23.7
All Vehic	eles	2365	63	2489	2.7	0.637	27.4	LOS B	24.8	177.3	0.72	0.65	0.72	24.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian	Movemo	ent Perf	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of s Service		BACK OF EUE Dist]	Prop. E	ffective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
South: New 0	ped/h	ped/h	sec		ped	m			sec	m	m/sec
P4 Full	20	y Ku 21	40.5	LOS E	0.1	0.1	0.90	0.90	66.3	33.5	0.51
East: Marrick	ville Rd										
P1 Full	18	19	18.0	LOS B	0.0	0.0	0.60	0.60	44.2	34.0	0.77

Site: TCS 86 [New Canterbury Road / Marrickville Road -

Construction (Site Folder: PM)]

New Canterbury Road / Marrickville Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfoi	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: New	Canterb	ury Rd											
10	L2	6	1	6	16.7	0.461	6.7	LOS A	2.2	15.6	0.08	0.08	0.08	48.8
11	T1	595	13	626	2.2	0.461	1.0	LOSA	2.2	15.6	0.08	0.08	0.08	56.0
12	R2	211	5	222	2.4	* 0.612	45.7	LOS D	9.7	69.5	0.93	0.81	0.93	22.5
Appr	oach	812	19	855	2.3	0.612	12.7	LOSA	9.7	69.5	0.30	0.27	0.30	33.5
East:	Marri	ckville Rd												
1	L2	336	14	354	4.2	0.609	26.0	LOS B	12.5	90.4	0.77	0.77	0.77	27.4
2	T1	64	0	67	0.0	0.595	46.5	LOS D	6.0	42.1	0.99	0.81	1.01	24.0
3	R2	54	0	57	0.0	* 0.595	49.9	LOS D	6.0	42.1	0.99	0.81	1.01	21.5
Appr	oach	454	14	478	3.1	0.609	31.7	LOS C	12.5	90.4	0.83	0.78	0.83	26.0
North	n: New	Canterbu	ury Rd											
4	L2	75	0	79	0.0	* 0.637	41.2	LOS C	24.3	172.8	1.00	0.89	1.00	25.1
5	T1	943	22	993	2.3	0.637	35.4	LOS C	24.8	177.3	1.00	0.89	1.00	17.9
6	R2	1	1	1	100.0	0.637	41.8	LOS C	24.8	177.3	1.00	0.89	1.00	21.4
Appr	oach	1019	23	1073	2.3	0.637	35.8	LOS C	24.8	177.3	1.00	0.89	1.00	18.8
West	:: Dulw	ich St												
7	L2	17	0	18	0.0	0.088	48.8	LOS D	0.8	5.6	0.93	0.69	0.93	17.9
8	T1	60	7	63	11.7	0.264	43.0	LOS D	3.0	22.6	0.92	0.73	0.92	25.0
9	R2	3	0	3	0.0	0.264	46.3	LOS D	3.0	22.6	0.92	0.73	0.92	18.9
Appr	oach	80	7	84	8.8	0.264	44.4	LOS D	3.0	22.6	0.93	0.72	0.93	23.7
All Vehic	cles	2365	63	2489	2.7	0.637	27.4	LOS B	24.8	177.3	0.72	0.65	0.72	24.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian	Movemo	ent Perf	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of s Service		BACK OF EUE Dist]	Prop. E	ffective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
South: New 0	ped/h	ped/h	sec		ped	m			sec	m	m/sec
P4 Full	20	y Ku 21	40.5	LOS E	0.1	0.1	0.90	0.90	66.3	33.5	0.51
East: Marrick	ville Rd										
P1 Full	18	19	18.0	LOS B	0.0	0.0	0.60	0.60	44.2	34.0	0.77

Site: TCS 86 [New Canterbury Road / Marrickville Road - TTP

(Site Folder: PM)]

New Canterbury Road / Marrickville Road

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
	Turn	INF		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU	JMES HV]	FLC [Total	WS HV]	Satn	Delay	Service	QUE [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m m		rtate	Cycles	km/h
South	n: New	Canterb	ury Rd											
10	L2	6	1	6	16.7	0.490	7.1	LOSA	3.1	22.7	0.11	0.10	0.11	48.0
11	T1	610	28	642	4.6	0.490	1.5	LOSA	3.1	22.7	0.11	0.10	0.11	54.6
12	R2	211	5	222	2.4	0.532	42.6	LOS D	9.1	65.3	0.88	0.80	0.88	23.2
Appro	oach	827	34	871	4.1	0.532	12.0	LOSA	9.1	65.3	0.30	0.28	0.30	34.2
East:	Marrio	ckville Rd	l											
1	L2	386	64	406	16.6	* 0.689	24.7	LOS B	14.4	115.3	0.78	0.78	0.78	27.7
2	T1	64	0	67	0.0	0.553	45.1	LOS D	5.9	41.3	0.98	0.79	0.98	24.3
3	R2	54	0	57	0.0	0.553	48.5	LOS D	5.9	41.3	0.98	0.79	0.98	21.8
Appro	oach	504	64	531	12.7	0.689	29.8	LOS C	14.4	115.3	0.83	0.78	0.83	26.4
North	: New	Canterb	ury Rd											
4	L2	75	0	79	0.0	* 0.700	44.4	LOS D	24.7	175.8	1.00	0.89	1.00	24.2
5	T1	943	22	993	2.3	0.700	38.6	LOS C	25.3	180.9	1.00	0.89	1.00	16.8
6	R2	1	1	1	100.0	0.700	45.1	LOS D	25.3	180.9	1.00	0.89	1.00	20.3
Appro	oach	1019	23	1073	2.3	0.700	39.1	LOS C	25.3	180.9	1.00	0.89	1.00	17.7
West	: Dulw	ich St												
7	L2	17	0	18	0.0	0.080	47.6	LOS D	0.8	5.6	0.92	0.69	0.92	18.2
8	T1	60	7	63	11.7	0.248	42.0	LOS C	2.9	22.3	0.91	0.73	0.91	25.3
9	R2	3	0	3	0.0	0.248	45.2	LOS D	2.9	22.3	0.91	0.73	0.91	19.2
Appro	oach	80	7	84	8.8	0.248	43.3	LOS D	2.9	22.3	0.91	0.72	0.91	23.9
All Vehic	eles	2430	128	2558	5.3	0.700	28.1	LOS B	25.3	180.9	0.72	0.65	0.72	24.2

 $Site\ Level\ of\ Service\ (LOS)\ Method:\ Delay\ (RTA\ NSW).\ Site\ LOS\ Method\ is\ specified\ in\ the\ Parameter\ Settings\ dialog\ (Site\ tab).$

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian	Movem	ent Perf	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service		BACK OF EUE Dist]	Prop. Et Que	ffective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: New C	anterbur	y Rd									
P4 Full	20	21	39.6	LOS D	0.1	0.1	0.89	0.89	65.4	33.5	0.51
East: Marricky	/ille Rd										
P1 Full	18	19	20.5	LOS C	0.0	0.0	0.64	0.64	46.7	34.0	0.73

Site: TCS 162 [Canterbury Rd / Burwood Rd - Future Base

(Site Folder: PM)]

Canterbury Rd / Burwood Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 70 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU	IMES	DEM. FLO		Deg. Satn		Level of Service	QUE	ACK OF EUE	Prop. E Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Cante	rbury Rd												
5	T1	1229	65	1294	5.3	0.759	5.1	LOSA	13.0	95.4	0.28	0.29	0.29	53.6
6	R2	213	15	224	7.0	* 0.759	27.4	LOS B	13.0	95.4	0.89	0.97	0.97	38.0
Appr	oach	1442	80	1518	5.5	0.759	8.4	LOSA	13.0	95.4	0.37	0.39	0.39	50.2
North	n: Burw	ood Rd												
7	L2	91	9	96	9.9	0.136	18.4	LOS B	2.0	15.5	0.65	0.70	0.65	40.1
9	R2	153	4	161	2.6	* 1.037	97.1	LOS F	10.2	72.8	1.00	1.43	2.49	20.1
Appr	oach	244	13	257	5.3	1.037	67.8	LOS E	10.2	72.8	0.87	1.16	1.80	24.7
West	:: Cante	erbury Ro	i											
10	L2	60	0	63	0.0	* 0.886	32.5	LOS C	25.1	178.7	0.94	1.00	1.16	36.7
11	T1	1256	25	1322	2.0	0.886	26.8	LOS B	25.8	183.6	0.94	1.00	1.16	38.1
Appr	oach	1316	25	1385	1.9	0.886	27.0	LOS B	25.8	183.6	0.94	1.00	1.16	38.0
All Vehic	cles	3002	118	3160	3.9	1.037	21.4	LOS B	25.8	183.6	0.66	0.72	0.84	40.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	/loveme	ent Perf	ormano	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE	UE	Prop. Et Que	Stop	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
East: Canterbo	ury Rd										
P2 Full	14	15	28.4	LOS C	0.0	0.0	0.90	0.90	53.8	33.0	0.61
North: Burwoo	d Rd										
P3 Full	1	1	17.2	LOS B	0.0	0.0	0.70	0.70	45.6	37.0	0.81
West: Canterb	ury Rd										
P4 Full	20	21	28.4	LOS C	0.0	0.0	0.90	0.90	53.8	33.0	0.61
All Pedestrians	35	37	28.1	LOS C	0.0	0.0	0.89	0.89	53.5	33.1	0.62

Site: TCS 162 [Canterbury Rd / Burwood Rd - Construction

(Site Folder: PM)]

Canterbury Rd / Burwood Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 70 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLL	IMES	DEM/ FLO	WS	Deg. Satn		Level of Service	QUE		Prop. E Que	Stop		Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Cante	rbury Rd												
5	T1	1229	65	1294	5.3	0.759	5.1	LOSA	13.0	95.4	0.28	0.29	0.29	53.6
6	R2	213	15	224	7.0	* 0.759	27.4	LOS B	13.0	95.4	0.89	0.97	0.97	38.0
Appro	oach	1442	80	1518	5.5	0.759	8.4	LOSA	13.0	95.4	0.37	0.39	0.39	50.2
North	n: Burw	ood Rd												
7	L2	91	9	96	9.9	0.136	18.4	LOS B	2.0	15.5	0.65	0.70	0.65	40.1
9	R2	153	4	161	2.6	* 1.037	97.1	LOS F	10.2	72.8	1.00	1.43	2.49	20.1
Appro	oach	244	13	257	5.3	1.037	67.8	LOS E	10.2	72.8	0.87	1.16	1.80	24.7
West	: Cante	erbury Ro	d											
10	L2	60	0	63	0.0	* 0.886	32.5	LOS C	25.1	178.7	0.94	1.00	1.16	36.7
11	T1	1256	25	1322	2.0	0.886	26.8	LOS B	25.8	183.6	0.94	1.00	1.16	38.1
Appro	oach	1316	25	1385	1.9	0.886	27.0	LOS B	25.8	183.6	0.94	1.00	1.16	38.0
All Vehic	cles	3002	118	3160	3.9	1.037	21.4	LOS B	25.8	183.6	0.66	0.72	0.84	40.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	lovem	ent Perf	ormano	е							
Mov _{ID} Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A	AVERAGE QUE		Prop. Et Que	ffective Stop	Travel Time	Travel Dist. S	Aver. Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: Canterbu	ıry Rd										
P2 Full	14	15	28.4	LOS C	0.0	0.0	0.90	0.90	53.8	33.0	0.61
North: Burwoo	d Rd										
P3 Full	1	1	17.2	LOS B	0.0	0.0	0.70	0.70	45.6	37.0	0.81
West: Canterb	ury Rd										
P4 Full	20	21	28.4	LOS C	0.0	0.0	0.90	0.90	53.8	33.0	0.61
All Pedestrians	35	37	28.1	LOS C	0.0	0.0	0.89	0.89	53.5	33.1	0.62

Site: TCS 162 [Canterbury Rd / Burwood Rd - TTP (Site Folder:

PM)]

Canterbury Rd / Burwood Rd

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site Optimum Cycle Time - Minimum Delay)

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East:	Cante	rbury Rd		VC11/11	/0	V/C	366		VEII	- '''				KIII/II
5 6 Appro	T1 R2 oach	1229 241 1470	65 43 108	1294 254 1547	5.3 17.8 7.3	0.720 * 0.720 0.720	5.9 36.6 11.0	LOS A LOS C LOS A	19.7 19.7 19.7	151.8 151.8 151.8	0.20 0.83 0.31	0.22 0.97 0.35	0.20 0.83 0.31	52.8 34.2 48.0
North	n: Burw	ood Rd												
7 9 Appro	L2 R2 oach	101 153 254	19 4 23	106 161 267	18.8 2.6 9.1	0.151 * 0.889 0.889	26.8 79.5 58.5	LOS B LOS F LOS E	3.9 11.6 11.6	31.7 82.9 82.9	0.62 1.00 0.85	0.71 0.98 0.87	0.62 1.38 1.08	36.2 22.8 26.8
West	: Cante	erbury Ro	i											
10 11 Appre	L2 T1 oach	60 1256 1316	0 25 25	63 1322 1385	0.0 2.0 1.9	* 0.803 0.803 0.803	32.9 27.3 27.6	LOS C LOS B LOS B	33.4 33.8 33.8	237.2 240.9 240.9	0.83 0.83 0.83	0.77 0.76 0.76	0.84 0.83 0.83	36.5 37.8 37.7
All Vehic	cles	3040	156	3200	5.1	0.889	22.1	LOS B	33.8	240.9	0.58	0.57	0.60	40.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Ped	destrian N	loveme	ent Perf	ormano	е							
Mov ID	v Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
		ped/h	ped/h	sec		ped	m			sec	m	m/sec
Eas	t: Canterbu	ury Rd										
P2	Full	14	15	55.4	LOS E	0.1	0.1	0.92	0.92	80.8	33.0	0.41
Nor	th: Burwoo	d Rd										
P3	Full	1	1	24.0	LOS C	0.0	0.0	0.61	0.61	52.5	37.0	0.71
We	st: Canterb	ury Rd										
P4	Full	20	21	55.4	LOS E	0.1	0.1	0.92	0.92	80.8	33.0	0.41
All Pec	lestrians	35	37	54.5	LOS E	0.1	0.1	0.91	0.91	80.0	33.1	0.41

Site: TCS 382 [King Georges Rd / The Boulevarde - Future

Base (Site Folder: AM)]

King Georges Rd / The Boulevarde

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUI [Veh. veh	ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: King	Georges		7011/11	,,,	1,0			7011					1,11,711
1	L2	19	2	20	10.5	* 0.821	31.3	LOS C	50.1	375.5	0.86	0.80	0.86	37.8
2	T1	2500	202	2632	8.1	0.821	25.5	LOS B	50.3	376.8	0.86	0.80	0.86	36.8
Appr	oach	2519	204	2652	8.1	0.821	25.6	LOS B	50.3	376.8	0.86	0.80	0.86	36.8
East:	The B	oulevard	е											
4	L2	9	1	9	11.1	0.315	59.9	LOS E	7.2	51.1	0.90	0.73	0.90	27.8
5	T1	100	1	105	1.0	0.315	55.3	LOS D	7.2	51.1	0.90	0.73	0.90	25.0
6	R2	114	1	120	0.9	* 0.815	85.1	LOS F	9.4	66.2	1.00	0.91	1.23	16.2
Appr	oach	223	3	235	1.3	0.815	70.7	LOS F	9.4	66.2	0.95	0.82	1.07	20.4
North	n: King	Georges	Rd											
7	L2	106	2	112	1.9	0.707	20.7	LOS B	35.3	266.6	0.63	0.62	0.63	36.8
8	T1	2289	232	2409	10.1	0.707	15.5	LOS B	38.0	288.7	0.66	0.62	0.66	43.2
9	R2	38	1	40	2.6	* 0.312	59.5	LOS E	2.8	19.8	0.92	0.79	0.92	20.2
Appr	oach	2433	235	2561	9.7	0.707	16.5	LOS B	38.0	288.7	0.66	0.62	0.66	42.3
West	: The E	Boulevard	le											
10	L2	130	3	137	2.3	0.390	61.6	LOS E	8.8	62.6	0.92	0.79	0.92	19.4
11	T1	136	2	143	1.5	* 0.656	70.6	LOS F	10.3	73.2	1.00	0.82	1.02	22.0
Appr	oach	266	5	280	1.9	0.656	66.2	LOS E	10.3	73.2	0.96	0.81	0.97	20.9
All Vehic	cles	5441	447	5727	8.2	0.821	25.3	LOS B	50.3	376.8	0.78	0.72	0.79	36.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian Mov	Novem Input	ent Perf Dem.	ormano Aver.	•	AVFRAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist. S	
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sed
South: King G	eorges l	Rd									
P1 Full	50	53	70.2	LOS F	0.2	0.2	0.97	0.97	243.5	225.3	0.93
East: The Bou	levarde										
P2 Full	50	53	65.5	LOS F	0.2	0.2	0.94	0.94	231.0	215.2	0.93
North: King Ge	eorges F	Rd									
P3 Full	50	53	70.2	LOS F	0.2	0.2	0.97	0.97	244.2	226.1	0.93

Site: TCS 382 [King Georges Rd / The Boulevarde -

Construction (Site Folder: AM)]

King Georges Rd / The Boulevarde

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: King	Georges	Rd											
1	L2	27	10	28	37.0	* 0.840	32.8	LOS C	51.6	390.0	0.89	0.83	0.89	37.0
2	T1	2508	210	2640	8.4	0.840	26.7	LOS B	52.3	392.1	0.89	0.83	0.89	36.2
Appr	oach	2535	220	2668	8.7	0.840	26.7	LOS B	52.3	392.1	0.89	0.83	0.89	36.2
East:	The B	oulevard	е											
4	L2	11	3	12	27.3	0.326	60.2	LOS E	7.3	52.9	0.90	0.73	0.90	27.6
5	T1	100	1	105	1.0	0.326	55.5	LOS D	7.3	52.9	0.90	0.73	0.90	24.9
6	R2	114	1	120	0.9	* 0.815	85.1	LOS F	9.4	66.2	1.00	0.91	1.23	16.2
Appr	oach	225	5	237	2.2	0.815	70.7	LOS F	9.4	66.2	0.95	0.82	1.07	20.4
North	n: King	Georges	Rd											
7	L2	106	2	112	1.9	0.714	21.4	LOS B	36.1	272.1	0.64	0.63	0.64	36.4
8	T1	2289	232	2409	10.1	0.714	16.2	LOS B	38.7	294.7	0.67	0.63	0.67	42.7
9	R2	38	1	40	2.6	* 0.314	62.4	LOS E	2.8	20.1	0.93	0.79	0.93	19.6
Appr	oach	2433	235	2561	9.7	0.714	17.1	LOS B	38.7	294.7	0.67	0.63	0.67	41.8
West	:: The E	Boulevard	le											
10	L2	138	11	145	8.0	0.526	61.4	LOS E	9.3	69.9	0.92	0.79	0.92	19.3
11	T1	136	2	143	1.5	* 0.827	75.4	LOS F	10.8	76.9	1.00	0.95	1.23	21.2
Appr	oach	274	13	288	4.7	0.827	68.3	LOS E	10.8	76.9	0.96	0.87	1.08	20.4
All Vehic	cles	5467	473	5755	8.7	0.840	26.4	LOS B	52.3	392.1	0.80	0.74	0.81	35.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian N	Movem	ent Perf	ormano	ce							
Mov	Input	Dem.	Aver.	Level of a	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: King G	eorges l	Rd									
P1 Full	50	53	70.2	LOS F	0.2	0.2	0.97	0.97	243.5	225.3	0.93
East: The Bou	llevarde										
P2 Full	50	53	65.5	LOS F	0.2	0.2	0.94	0.94	231.0	215.2	0.93
North: King Ge	eorges F	₹d									
P3 Full	50	53	70.2	LOS F	0.2	0.2	0.97	0.97	244.2	226.1	0.93

Site: TCS 382 [King Georges Rd / The Boulevarde - TTP (Site

Folder: AM)]

King Georges Rd / The Boulevarde

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total		DEM. FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	% -	v/c	sec		veh	m ⁻				km/h
South	h: King	Georges	Rd											
1	L2	27	10	28	37.0	0.960	72.6	LOS F	78.6	594.0	1.00	1.10	1.22	25.3
2	T1	2508	210	2640	8.4	* 0.960	66.2	LOS E	79.4	595.8	1.00	1.10	1.22	22.8
Appr	oach	2535	220	2668	8.7	0.960	66.3	LOS E	79.4	595.8	1.00	1.10	1.22	22.8
East:	The B	oulevard	е											
4	L2	11	3	12	27.3	0.277	49.9	LOS D	7.4	53.3	0.82	0.68	0.82	30.2
5	T1	113	1	119	0.9	0.277	45.2	LOS D	7.4	53.3	0.82	0.68	0.82	27.5
6	R2	114	1	120	0.9	* 0.889	91.5	LOS F	9.8	69.4	1.00	0.99	1.38	15.4
Appr	oach	238	5	251	2.1	0.889	67.6	LOS E	9.8	69.4	0.91	0.83	1.09	21.1
North	n: King	Georges	Rd											
7	L2	106	2	112	1.9	0.802	29.2	LOS C	44.1	332.8	0.79	0.75	0.79	31.9
8	T1	2289	232	2409	10.1	0.802	24.2	LOS B	47.4	360.4	0.82	0.76	0.82	37.5
9	R2	38	1	40	2.6	* 0.321	76.5	LOS F	2.9	21.0	0.98	0.74	0.98	17.2
Appr	oach	2433	235	2561	9.7	0.802	25.2	LOS B	47.4	360.4	0.82	0.76	0.82	36.7
West	: The E	Boulevard	le											
10	L2	138	11	145	8.0	0.407	50.0	LOS D	8.3	62.1	0.83	0.77	0.83	21.8
11	T1	206	2	217	1.0	* 0.976	106.3	LOS F	20.7	145.8	1.00	1.22	1.56	17.2
Appr	oach	344	13	362	3.8	0.976	83.8	LOS F	20.7	145.8	0.93	1.04	1.27	18.4
All Vehic	cles	5550	473	5842	8.5	0.976	49.4	LOS D	79.4	595.8	0.91	0.94	1.04	26.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian	Movem	ent Perf	ormano	ce							
Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: King G	Georges I	Rd									
P1 Full	50	53	70.2	LOS F	0.2	0.2	0.97	0.97	243.5	225.3	0.93
East: The Box	ulevarde										
P2 Full	50	53	65.5	LOS F	0.2	0.2	0.94	0.94	231.0	215.2	0.93
North: King G	eorges F	₹d									
P3 Full	50	53	70.2	LOS F	0.2	0.2	0.97	0.97	244.2	226.1	0.93

Site: TCS 382 [King Georges Rd / The Boulevarde - Future

Base (Site Folder: PM)]

King Georges Rd / The Boulevarde

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfo	mance										
Mov ID	Turn	INP VOLU I Total		DEM FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	h: King	Georges	Rd											
1	L2	30	0	32	0.0	* 0.872	42.3	LOS C	56.4	416.1	0.95	0.90	0.98	33.7
2	T1	2407	159	2534	6.6	0.872	36.0	LOS C	56.5	418.1	0.95	0.90	0.98	31.8
Appr	oach	2437	159	2565	6.5	0.872	36.1	LOS C	56.5	418.1	0.95	0.90	0.98	31.8
East:	The B	oulevard	е											
4	L2	27	0	28	0.0	0.701	55.7	LOS D	24.8	175.1	0.95	0.83	0.95	29.0
5	T1	341	4	359	1.2	0.877	51.9	LOS D	24.8	175.1	0.96	0.83	0.96	25.8
6	R2	200	1	211	0.5	* 0.877	84.2	LOS F	17.5	122.8	1.00	0.97	1.26	16.3
Appr	oach	568	5	598	0.9	0.877	63.4	LOS E	24.8	175.1	0.97	0.88	1.07	22.3
North	n: King	Georges	Rd											
7	L2	165	1	174	0.6	0.809	27.0	LOS B	51.7	371.5	0.81	0.78	0.81	32.9
8	T1	2513	92	2645	3.7	0.809	21.0	LOS B	52.0	375.7	0.80	0.75	0.80	39.3
9	R2	93	1	98	1.1	* 0.590	41.4	LOS C	4.7	33.1	1.00	0.82	1.00	24.8
Appr	oach	2771	94	2917	3.4	0.809	22.0	LOS B	52.0	375.7	0.80	0.75	0.80	38.4
West	:: The E	Boulevard	le											
10	L2	183	0	193	0.0	0.741	50.2	LOS D	11.0	76.7	1.00	0.85	1.07	21.9
11	T1	145	1	153	0.7	* 0.695	71.4	LOS F	11.1	78.4	1.00	0.84	1.05	21.9
Appr	oach	328	1	345	0.3	0.741	59.6	LOS E	11.1	78.4	1.00	0.84	1.06	21.9
All Vehic	cles	6104	259	6425	4.2	0.877	33.5	LOS C	56.5	418.1	0.89	0.83	0.91	32.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian Mov	Novem Input	ent Perf Dem.	ormano Aver.	•	AVFRAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist. S	
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sed
South: King G	eorges l	Rd									
P1 Full	50	53	70.2	LOS F	0.2	0.2	0.97	0.97	243.5	225.3	0.93
East: The Bou	levarde										
P2 Full	50	53	65.5	LOS F	0.2	0.2	0.94	0.94	231.0	215.2	0.93
North: King Ge	eorges F	Rd									
P3 Full	50	53	70.2	LOS F	0.2	0.2	0.97	0.97	244.2	226.1	0.93

Site: TCS 382 [King Georges Rd / The Boulevarde -

Construction (Site Folder: PM)]

King Georges Rd / The Boulevarde

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 130 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: King	Georges		7 0 1 1 1 1		.,,								
1	L2	38	8	40	21.1	0.914	51.7	LOS D	58.5	436.3	0.99	1.03	1.13	30.5
2	T1	2415	167	2542	6.9	* 0.914	45.0	LOS D	59.2	438.7	0.99	1.03	1.13	28.4
Appr	oach	2453	175	2582	7.1	0.914	45.1	LOS D	59.2	438.7	0.99	1.03	1.13	28.5
East:	The B	oulevard	Э											
4	L2	29	2	31	6.9	0.690	47.8	LOS D	21.8	154.7	0.94	0.82	0.94	31.1
5	T1	341	4	359	1.2	0.690	43.4	LOS D	21.8	154.7	0.94	0.82	0.94	28.0
6	R2	200	1	211	0.5	* 0.871	74.7	LOS F	14.8	103.9	1.00	0.98	1.29	17.7
Appr	oach	570	7	600	1.2	0.871	54.6	LOS D	21.8	154.7	0.96	0.88	1.06	24.2
North	n: King	Georges	Rd											
7	L2	165	1	174	0.6	0.842	26.9	LOS B	48.1	345.6	0.87	0.82	0.87	32.9
8	T1	2513	92	2645	3.7	0.842	21.3	LOS B	48.3	349.0	0.85	0.80	0.85	39.1
9	R2	93	1	98	1.1	* 0.666	40.0	LOS C	4.0	28.1	1.00	0.82	1.09	25.3
Appr	oach	2771	94	2917	3.4	0.842	22.3	LOS B	48.3	349.0	0.86	0.80	0.86	38.2
West	:: The E	Boulevard	е											
10	L2	191	8	201	4.2	* 0.921	60.3	LOS E	11.9	86.6	1.00	1.01	1.43	19.6
11	T1	145	1	153	0.7	0.848	67.7	LOS E	10.3	72.4	1.00	0.98	1.30	22.5
Appr	oach	336	9	354	2.7	0.921	63.5	LOS E	11.9	86.6	1.00	1.00	1.37	21.0
All Vehic	cles	6130	285	6453	4.6	0.921	36.7	LOS C	59.2	438.7	0.93	0.91	1.02	30.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian	Movem	ent Perf	ormano	е							
Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: King G	Georges I	Rd									
P1 Full	50	53	60.2	LOS F	0.2	0.2	0.96	0.96	233.5	225.3	0.96
East: The Box	ulevarde										
P2 Full	50	53	55.5	LOS E	0.2	0.2	0.93	0.93	221.0	215.2	0.97
North: King G	eorges F	Rd									
P3 Full	50	53	60.2	LOS F	0.2	0.2	0.96	0.96	234.2	226.1	0.97

Site: TCS 382 [King Georges Rd / The Boulevarde - TTP (Site

Folder: PM)]

King Georges Rd / The Boulevarde

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total		DEM. FLO [Total		Deg. Satn		Level of Service	95% B <i>A</i> QUE [Veh.		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
Sout	h: King	Georges	Rd											
1	L2	38	8	40	21.1	0.955	72.4	LOS F	74.9	558.5	1.00	1.09	1.21	25.5
2	T1	2415	167	2542	6.9	* 0.955	65.5	LOS E	75.7	561.6	1.00	1.09	1.21	22.9
Appr	oach	2453	175	2582	7.1	0.955	65.6	LOS E	75.7	561.6	1.00	1.09	1.21	23.0
East	The B	oulevard	е											
4	L2	29	2	31	6.9	0.758	52.8	LOS D	27.5	194.5	0.96	0.85	0.96	29.7
5	T1	403	4	424	1.0	0.948	52.2	LOS D	27.5	194.5	0.96	0.87	1.00	25.7
6	R2	200	1	211	0.5	* 0.948	98.5	LOS F	21.9	154.0	1.00	1.07	1.42	14.7
Appr	oach	632	7	665	1.1	0.948	66.9	LOS E	27.5	194.5	0.97	0.93	1.13	21.8
North	n: King	Georges	Rd											
7	L2	165	1	174	0.6	0.873	34.5	LOS C	59.8	429.8	0.92	0.88	0.93	29.3
8	T1	2513	92	2645	3.7	0.873	28.9	LOS C	60.0	433.3	0.90	0.85	0.91	34.9
9	R2	93	1	98	1.1	* 0.648	45.3	LOS D	4.4	30.7	1.00	0.80	1.05	23.7
Appr	oach	2771	94	2917	3.4	0.873	29.8	LOS C	60.0	433.3	0.90	0.85	0.92	34.1
West	: The E	Boulevard	le											
10	L2	191	8	201	4.2	0.769	47.0	LOS D	10.9	79.0	0.98	0.86	1.09	22.6
11	T1	167	1	176	0.6	* 0.982	109.0	LOS F	16.5	116.4	1.00	1.19	1.61	16.9
Appr	oach	358	9	377	2.5	0.982	76.0	LOS F	16.5	116.4	0.99	1.02	1.33	19.0
All Vehic	cles	6214	285	6541	4.6	0.982	50.3	LOS D	75.7	561.6	0.95	0.96	1.08	26.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Movem	ent Perf	ormano	е							
Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: King G	eorges l	Rd									
P1 Full	50	53	70.2	LOS F	0.2	0.2	0.97	0.97	243.5	225.3	0.93
East: The Bou	llevarde										
P2 Full	50	53	65.5	LOS F	0.2	0.2	0.94	0.94	231.0	215.2	0.93
North: King G	eorges F	Rd									
P3 Full	50	53	70.2	LOS F	0.2	0.2	0.97	0.97	244.2	226.1	0.93

Site: TCS 507 [Canterbury Rd / Charlotte St / Thorncraft Pde -

Future Base (Site Folder: AM)]

Canterbury Rd / Charlotte St / Thorncraft Pde

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: Chai	rlotte St												
1	L2	16	1	17	6.3	0.223	29.8	LOS C	3.4	24.5	0.82	0.67	0.82	37.5
2	T1	245	6	258	2.4	0.746	34.0	LOS C	8.2	59.2	0.94	0.83	1.04	32.2
3	R2	35	2	37	5.7	0.746	43.5	LOS D	8.2	59.2	1.00	0.91	1.17	32.3
Appr	oach	296	9	312	3.0	0.746	34.9	LOS C	8.2	59.2	0.94	0.83	1.04	32.4
East:	Cante	rbury Rd												
4	L2	26	1	27	3.8	0.398	15.1	LOS B	9.0	65.7	0.58	0.52	0.58	46.4
5	T1	795	43	837	5.4	0.398	9.5	LOS A	9.1	66.6	0.58	0.52	0.58	51.2
6	R2	135	0	142	0.0	* 1.020	92.9	LOS F	9.1	63.5	1.00	1.25	2.25	20.8
Appr	oach	956	44	1006	4.6	1.020	21.4	LOS B	9.1	66.6	0.64	0.62	0.81	42.8
North	n: Thor	ncraft Pd	е											
7	L2	62	0	65	0.0	0.198	29.6	LOS C	3.0	21.2	0.82	0.71	0.82	36.2
8	T1	238	2	251	8.0	* 0.940	52.2	LOS D	14.0	98.6	0.98	1.15	1.55	27.0
9	R2	49	1	52	2.0	0.940	60.9	LOS E	14.0	98.6	1.00	1.22	1.66	27.4
Appr	oach	349	3	367	0.9	0.940	49.4	LOS D	14.0	98.6	0.95	1.08	1.43	28.3
West	:: Cante	erbury Ro	j											
10	L2	153	2	161	1.3	0.988	74.1	LOS F	48.7	355.2	1.00	1.38	1.66	25.1
11	T1	1331	77	1401	5.8	* 0.988	67.2	LOS E	51.2	376.1	1.00	1.40	1.65	27.3
Appr	oach	1484	79	1562	5.3	0.988	68.0	LOS E	51.2	376.1	1.00	1.40	1.65	27.0
All Vehic	cles	3085	135	3247	4.4	1.020	48.3	LOS D	51.2	376.1	0.88	1.07	1.31	31.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Charlot	tte St										
P1 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	199.8	215.2	1.08
East: Canterb	ury Rd										
P2 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	202.4	218.5	1.08
North: Thornce	raft Pde										

Site: TCS 507 [Canterbury Rd / Charlotte St / Thorncraft Pde -

Construction (Site Folder: AM)]

Canterbury Rd / Charlotte St / Thorncraft Pde

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	h: Chai	rlotte St												
1	L2	16	1	17	6.3	0.223	29.8	LOS C	3.4	24.5	0.82	0.67	0.82	37.5
2	T1	245	6	258	2.4	0.746	34.0	LOS C	8.2	59.2	0.94	0.83	1.04	32.2
3	R2	35	2	37	5.7	0.746	43.5	LOS D	8.2	59.2	1.00	0.91	1.17	32.3
Appr	oach	296	9	312	3.0	0.746	34.9	LOS C	8.2	59.2	0.94	0.83	1.04	32.4
East:	Cante	rbury Rd												
4	L2	26	1	27	3.8	0.398	15.1	LOS B	9.0	65.7	0.58	0.52	0.58	46.4
5	T1	795	43	837	5.4	0.398	9.5	LOSA	9.1	66.6	0.58	0.52	0.58	51.2
6	R2	135	0	142	0.0	* 1.020	92.9	LOS F	9.1	63.5	1.00	1.25	2.25	20.8
Appr	oach	956	44	1006	4.6	1.020	21.4	LOS B	9.1	66.6	0.64	0.62	0.81	42.8
North	n: Thor	ncraft Pd	е											
7	L2	62	0	65	0.0	0.198	29.6	LOS C	3.0	21.2	0.82	0.71	0.82	36.2
8	T1	238	2	251	8.0	* 0.940	52.2	LOS D	14.0	98.6	0.98	1.15	1.55	27.0
9	R2	49	1	52	2.0	0.940	60.9	LOS E	14.0	98.6	1.00	1.22	1.66	27.4
Appr	oach	349	3	367	0.9	0.940	49.4	LOS D	14.0	98.6	0.95	1.08	1.43	28.3
West	:: Cante	erbury Ro	t											
10	L2	153	2	161	1.3	0.988	74.1	LOS F	48.7	355.2	1.00	1.38	1.66	25.1
11	T1	1331	77	1401	5.8	* 0.988	67.2	LOS E	51.2	376.1	1.00	1.40	1.65	27.3
Appr	oach	1484	79	1562	5.3	0.988	68.0	LOS E	51.2	376.1	1.00	1.40	1.65	27.0
All Vehic	cles	3085	135	3247	4.4	1.020	48.3	LOS D	51.2	376.1	0.88	1.07	1.31	31.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m		11010	sec	m	m/sec
South: Charlot	te St										
P1 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	199.8	215.2	1.08
East: Canterb	ury Rd										
P2 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	202.4	218.5	1.08
North: Thornce	aft Pde										

Site: TCS 507 [Canterbury Rd / Charlotte St / Thorncraft Pde -

TTP (Site Folder: AM)]

Canterbury Rd / Charlotte St / Thorncraft Pde

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Chai	rlotte St												
1	L2	16	1	17	6.3	0.244	29.8	LOS C	2.9	20.5	0.87	0.69	0.87	37.5
2	T1	245	6	258	2.4	0.815	33.4	LOS C	8.2	58.6	0.96	0.90	1.18	32.4
3	R2	35	2	37	5.7	0.815	41.7	LOS C	8.2	58.6	1.00	1.00	1.32	32.9
Appr	oach	296	9	312	3.0	0.815	34.2	LOS C	8.2	58.6	0.96	0.90	1.18	32.7
East	Cante	rbury Rd												
4	L2	26	1	27	3.8	0.383	12.9	LOSA	7.4	54.2	0.54	0.49	0.54	47.9
5	T1	795	47	837	5.9	0.383	7.3	LOSA	7.5	55.0	0.54	0.48	0.54	53.0
6	R2	135	0	142	0.0	* 0.893	50.3	LOS D	5.9	41.2	1.00	1.03	1.66	29.1
Appr	oach	956	48	1006	5.0	0.893	13.5	LOSA	7.5	55.0	0.61	0.56	0.70	47.6
North	n: Thor	ncraft Pd	е											
7	L2	62	0	65	0.0	0.213	29.6	LOS C	2.5	17.3	0.86	0.73	0.86	36.0
8	T1	238	2	251	8.0	* 1.010	74.1	LOS F	16.6	117.3	0.99	1.41	2.05	22.7
9	R2	49	1	52	2.0	1.010	83.1	LOS F	16.6	117.3	1.00	1.47	2.16	23.0
Appr	oach	349	3	367	0.9	1.010	67.5	LOS E	16.6	117.3	0.97	1.30	1.86	24.3
West	:: Cante	erbury Ro	t											
10	L2	153	2	161	1.3	0.999	76.5	LOS F	46.8	346.8	1.00	1.50	1.83	24.7
11	T1	1331	109	1401	8.2	* 0.999	69.8	LOS E	49.4	369.9	1.00	1.51	1.82	26.7
Appr	oach	1484	111	1562	7.5	0.999	70.5	LOS E	49.4	369.9	1.00	1.51	1.82	26.5
All Vehic	cles	3085	171	3247	5.5	1.010	49.0	LOS D	49.4	369.9	0.87	1.13	1.42	31.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov _	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Charlo	te St										
P1 Full	50	53	29.3	LOS C	0.1	0.1	0.92	0.92	194.9	215.2	1.10
East: Canterb	ury Rd										
P2 Full	50	53	29.3	LOS C	0.1	0.1	0.92	0.92	197.4	218.5	1.11
North: Thornci	aft Pde										

Site: TCS 507 [Canterbury Rd / Charlotte St / Thorncraft Pde -

Future Base (Site Folder: PM)]

Canterbury Rd / Charlotte St / Thorncraft Pde

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: Cha	rlotte St												
1 2 3	L2 T1 R2	29 242 57	1 3 1	31 255 60	3.4 1.2 1.8	0.252 * 0.843 0.843	30.9 40.4 58.6	LOS C LOS C LOS E	5.6 10.3 10.3	39.5 73.0 73.0	0.77 0.89 1.00	0.66 0.83 1.01	0.77 1.05 1.32	37.0 30.1 28.1
Appr		328	5	345	1.5	0.843	42.7	LOS D	10.3	73.0	0.90	0.85	1.07	30.2
East:	Cante	rbury Rd												
4 5 6 Appre	L2 T1 R2	67 1242 180 1489	0 31 1 32	71 1307 189 1567	0.0 2.5 0.6 2.1	0.731 0.731 * 0.855 0.855	23.6 17.1 60.8 22.7	LOS B LOS B LOS E	27.7 27.7 10.4 27.7	197.6 197.6 72.8 197.6	0.81 0.77 1.00 0.80	0.75 0.70 0.95 0.73	0.81 0.77 1.34 0.84	41.4 45.9 26.6 42.2
		ncraft Pd		1307	2.1	0.000	22.1	LOGB	21.1	107.0	0.00	0.70	0.04	72.2
7 8 9	L2 T1 R2	97 371 126	1 7 5	102 391 133	1.0 1.9 4.0	0.795 0.795 0.997	40.6 36.0 93.5	LOS C LOS C LOS F	23.3 23.3 9.3	165.4 165.4 67.7	0.97 0.97 1.00	0.92 0.92 1.24	1.05 1.05 1.95	32.8 31.4 20.9
Appr		594	13	625	2.2	0.997	49.0	LOS D	23.3	165.4	0.98	0.98	1.24	28.5
West		erbury Ro												
10 11	L2 T1	140 1087	0 25	147 1144	0.0 2.3	0.927 * 0.927	58.8 52.1	LOS E LOS D	38.6 39.6	274.3 282.4	1.00 1.00	1.12 1.13	1.31 1.31	28.5 31.1
Appro	oach	1227	25	1292	2.0	0.927	52.8	LOS D	39.6	282.4	1.00	1.13	1.31	30.8
All Vehic	cles	3638	75	3829	2.1	0.997	38.9	LOS C	39.6	282.4	0.90	0.92	1.08	34.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov _	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Charlo	te St										
P1 Full	50	53	44.3	LOS E	0.1	0.1	0.94	0.94	209.8	215.2	1.03
East: Canterb	ury Rd										
P2 Full	50	53	44.3	LOS E	0.1	0.1	0.94	0.94	212.4	218.5	1.03
North: Thorno	aft Pde										

Site: TCS 507 [Canterbury Rd / Charlotte St / Thorncraft Pde -

Construction (Site Folder: PM)]

Canterbury Rd / Charlotte St / Thorncraft Pde

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	JMES HV 1	FLO [Total	WS HV]	Satn	Delay	Service	QUE [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	veh/h	veh/h	пv ј %	v/c	sec		veh	m m		Nate	Cycles	km/h
South	n: Cha	rlotte St												
1	L2	29	1	31	3.4	0.252	30.9	LOS C	5.6	39.5	0.77	0.66	0.77	37.0
2	T1	242	3	255	1.2	* 0.843	40.4	LOS C	10.3	73.0	0.89	0.83	1.05	30.1
3	R2	57	1	60	1.8	0.843	58.6	LOS E	10.3	73.0	1.00	1.01	1.32	28.1
Appr	oach	328	5	345	1.5	0.843	42.7	LOS D	10.3	73.0	0.90	0.85	1.07	30.2
East:	Cante	erbury Rd												
4	L2	67	0	71	0.0	0.731	23.6	LOS B	27.7	197.6	0.81	0.75	0.81	41.4
5	T1	1242	31	1307	2.5	0.731	17.1	LOS B	27.7	197.6	0.77	0.70	0.77	45.9
6	R2	180	1	189	0.6	* 0.855	60.8	LOS E	10.4	72.8	1.00	0.95	1.34	26.6
Appr	oach	1489	32	1567	2.1	0.855	22.7	LOS B	27.7	197.6	0.80	0.73	0.84	42.2
North	n: Thor	ncraft Pd	е											
7	L2	97	1	102	1.0	0.795	40.6	LOS C	23.3	165.4	0.97	0.92	1.05	32.8
8	T1	371	7	391	1.9	0.795	36.0	LOS C	23.3	165.4	0.97	0.92	1.05	31.4
9	R2	126	5	133	4.0	0.997	93.5	LOS F	9.3	67.7	1.00	1.24	1.95	20.9
Appr	oach	594	13	625	2.2	0.997	49.0	LOS D	23.3	165.4	0.98	0.98	1.24	28.5
West	: Cant	erbury Ro	ł											
10	L2	140	0	147	0.0	0.927	58.8	LOS E	38.6	274.3	1.00	1.12	1.31	28.5
11	T1	1087	25	1144	2.3	* 0.927	52.1	LOS D	39.6	282.4	1.00	1.13	1.31	31.1
Appr	oach	1227	25	1292	2.0	0.927	52.8	LOS D	39.6	282.4	1.00	1.13	1.31	30.8
All Vehic	cles	3638	75	3829	2.1	0.997	38.9	LOS C	39.6	282.4	0.90	0.92	1.08	34.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m m		Nate	sec	m	m/sec
South: Charlot	te St										
P1 Full	50	53	44.3	LOS E	0.1	0.1	0.94	0.94	209.8	215.2	1.03
East: Canterb	ury Rd										
P2 Full	50	53	44.3	LOS E	0.1	0.1	0.94	0.94	212.4	218.5	1.03
North: Thornce	aft Pde										

Site: TCS 507 [Canterbury Rd / Charlotte St / Thorncraft Pde -

TTP (Site Folder: PM)]

Canterbury Rd / Charlotte St / Thorncraft Pde

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance							_			
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service		EUE Diet 1	Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Cha	rlotte St												
1	L2	29	1	31	3.4	0.233	30.0	LOS C	5.2	36.8	0.76	0.65	0.76	37.4
2	T1	242	3	255	1.2	0.779	37.7	LOS C	10.1	71.7	0.89	0.81	0.99	30.9
3	R2	57	1	60	1.8	0.779	52.8	LOS D	10.1	71.7	1.00	0.94	1.19	29.5
Appr	oach	328	5	345	1.5	0.779	39.6	LOS C	10.1	71.7	0.90	0.82	1.00	31.1
East:	Cante	rbury Rd												
4	L2	67	0	71	0.0	0.772	25.0	LOS B	29.6	214.7	0.85	0.79	0.85	40.7
5	T1	1270	59	1337	4.6	0.772	18.9	LOS B	29.6	214.7	0.81	0.74	0.81	44.8
6	R2	180	1	189	0.6	* 0.933	71.4	LOS F	11.5	80.6	1.00	1.05	1.59	24.4
Appr	oach	1517	60	1597	4.0	0.933	25.4	LOS B	29.6	214.7	0.83	0.78	0.91	40.8
North	n: Thor	ncraft Pd	е											
7	L2	97	1	102	1.0	0.757	37.7	LOS C	21.7	154.0	0.95	0.87	0.99	33.9
8	T1	371	7	391	1.9	* 0.947	34.0	LOS C	21.7	154.0	0.95	0.88	1.01	32.0
9	R2	126	5	133	4.0	0.947	77.1	LOS F	9.1	65.7	1.00	1.17	1.73	23.4
Appr	oach	594	13	625	2.2	0.947	43.8	LOS D	21.7	154.0	0.96	0.94	1.16	29.9
West	: Cant	erbury Ro	d											
10	L2	140	0	147	0.0	0.942	63.4	LOS E	40.8	291.3	1.00	1.16	1.37	27.4
11	T1	1097	35	1155	3.2	* 0.942	56.7	LOS E	41.7	299.9	1.00	1.17	1.36	29.8
Appr	oach	1237	35	1302	2.8	0.942	57.5	LOS E	41.7	299.9	1.00	1.17	1.36	29.5
All Vehic	cles	3676	113	3869	3.1	0.947	40.4	LOS C	41.7	299.9	0.91	0.94	1.11	33.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	VERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Charlot	te St										
P1 Full	50	53	44.3	LOS E	0.1	0.1	0.94	0.94	209.8	215.2	1.03
East: Canterbu	ıry Rd										
P2 Full	50	53	44.3	LOS E	0.1	0.1	0.94	0.94	212.4	218.5	1.03
North: Thorncr	aft Pde										

Site: TCS 602 [Canterbury Rd / Fore St - Future Base (Site

Folder: AM)]

Canterbury Rd / Fore St Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle Mo	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU	JMES	DEM. FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. E Que	ffective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Fore	St												
1	L2	209	9	220	4.3	0.264	20.2	LOS B	5.8	42.5	0.65	0.73	0.65	35.3
3	R2	280	15	295	5.4	* 0.835	49.1	LOS D	14.2	103.7	1.00	0.96	1.25	29.0
Appro	oach	489	24	515	4.9	0.835	36.8	LOS C	14.2	103.7	0.85	0.86	0.99	31.0
East:	Cante	rbury Rd												
4	L2	103	8	108	7.8	* 0.834	46.1	LOS D	26.6	193.6	0.97	1.01	1.09	31.6
5	T1	1071	41	1127	3.8	* 0.834	35.5	LOS C	27.7	200.6	0.97	0.98	1.09	29.0
Appro	oach	1174	49	1236	4.2	0.834	36.5	LOS C	27.7	200.6	0.97	0.98	1.09	29.3
West	: Cante	erbury Ro	t											
11	T1	1632	68	1718	4.2	0.729	9.9	LOSA	25.8	186.9	0.67	0.62	0.67	46.4
12	R2	167	4	176	2.4	* 0.726	30.6	LOS C	5.3	37.5	1.00	0.85	1.14	31.3
Appro	oach	1799	72	1894	4.0	0.729	11.8	LOSA	25.8	186.9	0.70	0.64	0.71	44.1
All Vehic	les	3462	145	3644	4.2	0.835	23.7	LOS B	27.7	200.6	0.81	0.79	0.88	35.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestria	n Movem	ent Perf	forman	ce							
Mov ID Crossii	Input ng Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
South: Fore	ped/h	ped/h	sec		ped	m			sec	m	m/sec
P1 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	204.8	215.2	1.05
East: Cante	erbury Rd										
P2 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	206.7	217.7	1.05
All Pedestrians	100 s	105	39.3	LOS D	0.1	0.1	0.94	0.94	205.8	216.5	1.05

Site: TCS 602 [Canterbury Rd / Fore St - Construction (Site

Folder: AM)]

Canterbury Rd / Fore St Site Category: (None)

Delay)

Vehi	cle Mo	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Fore					.,,								1.1.7.1
1 3 Appro	L2 R2 pach	209 280 489	9 15 24	220 295 515	4.3 5.4 4.9	0.264 * 0.835 0.835	20.2 49.1 36.8	LOS B LOS D LOS C	5.8 14.2 14.2	42.5 103.7 103.7	0.65 1.00 0.85	0.73 0.96 0.86	0.65 1.25 0.99	35.3 29.0 31.0
East:	Cante	rbury Rd												
4 5 Appro	L2 T1 pach	103 1071 1174	8 41 49	108 1127 1236	7.8 3.8 4.2	* 0.834 * 0.834 0.834	46.1 35.5 36.5	LOS D LOS C LOS C	26.6 27.7 27.7	193.6 200.6 200.6	0.97 0.97 0.97	1.01 0.98 0.98	1.09 1.09 1.09	31.6 29.0 29.3
West	: Cante	erbury Ro	d											
11 12 Appro	T1 R2 pach	1632 167 1799	68 4 72	1718 176 1894	4.2 2.4 4.0	0.729 * 0.726 0.729	9.9 30.6 11.8	LOS A LOS C LOS A	25.8 5.3 25.8	186.9 37.5 186.9	0.67 1.00 0.70	0.62 0.85 0.64	0.67 1.14 0.71	46.4 31.3 44.1
All Vehic	les	3462	145	3644	4.2	0.835	23.7	LOS B	27.7	200.6	0.81	0.79	0.88	35.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestria	n Movem	ent Perf	forman	ce							
Mov ID Crossii	Input ng Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
South: Fore	ped/h	ped/h	sec		ped	m			sec	m	m/sec
P1 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	204.8	215.2	1.05
East: Cante	erbury Rd										
P2 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	206.7	217.7	1.05
All Pedestrians	100 s	105	39.3	LOS D	0.1	0.1	0.94	0.94	205.8	216.5	1.05

Site: TCS 602 [Canterbury Rd / Fore St - TTP (Site Folder: AM)]

Canterbury Rd / Fore St Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU		DEM. FLO		Deg. Satn		Level of Service	QUE	ACK OF EUE	Prop. E Que	ffective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Fore	St												
1	L2	209	9	220	4.3	0.264	20.2	LOS B	5.8	42.5	0.65	0.73	0.65	35.3
3	R2	280	15	295	5.4	* 0.835	49.1	LOS D	14.2	103.7	1.00	0.96	1.25	29.0
Appro	oach	489	24	515	4.9	0.835	36.8	LOS C	14.2	103.7	0.85	0.86	0.99	31.0
East:	Cante	rbury Rd												
4	L2	103	8	108	7.8	* 0.857	49.0	LOS D	28.5	209.0	0.98	1.05	1.14	30.8
5	T1	1088	58	1145	5.3	* 0.857	38.3	LOS C	29.5	216.0	0.98	1.02	1.14	27.9
Appro	oach	1191	66	1254	5.5	0.857	39.2	LOS C	29.5	216.0	0.98	1.03	1.14	28.3
West	: Cante	erbury Ro	t											
11	T1	1727	163	1818	9.4	0.806	12.5	LOSA	31.1	235.4	0.74	0.70	0.76	43.8
12	R2	167	4	176	2.4	* 0.726	30.6	LOS C	5.3	37.5	1.00	0.85	1.14	31.3
Appro	oach	1894	167	1994	8.8	0.806	14.1	LOSA	31.1	235.4	0.76	0.72	0.80	42.0
All Vehic	eles	3574	257	3762	7.2	0.857	25.5	LOS B	31.1	235.4	0.85	0.84	0.94	34.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Novem	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. E Que	ffective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m		raio	sec	m	m/sec
South: Fore S	t										
P1 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	204.8	215.2	1.05
East: Canterb	ury Rd										
P2 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	206.7	217.7	1.05
All Pedestrians	100	105	39.3	LOS D	0.1	0.1	0.94	0.94	205.8	216.5	1.05

Site: TCS 602 [Canterbury Rd / Fore St - Future Base (Site

Folder: PM)]

Canterbury Rd / Fore St Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU		DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Fore	St												
1	L2	243	1	256	0.4	0.437	39.5	LOS C	11.9	83.3	0.84	0.80	0.84	27.8
3	R2	186	3	196	1.6	* 0.803	64.8	LOS E	12.1	85.9	1.00	0.91	1.19	25.5
Appr	oach	429	4	452	0.9	0.803	50.4	LOS D	12.1	85.9	0.91	0.85	0.99	26.6
East	Cante	rbury Rd												
4	L2	178	6	187	3.4	0.833	28.4	LOS B	43.0	306.9	0.88	0.85	0.89	38.2
5	T1	1574	32	1657	2.0	* 0.833	22.4	LOS B	44.0	313.7	0.88	0.83	0.89	35.7
Appr	oach	1752	38	1844	2.2	0.833	23.0	LOS B	44.0	313.7	0.88	0.84	0.89	36.1
West	: Cante	erbury Ro	t											
11	T1	1261	14	1327	1.1	0.463	6.4	LOSA	15.0	105.7	0.43	0.39	0.43	50.4
12	R2	160	2	168	1.3	* 0.847	70.7	LOS F	10.8	76.6	1.00	0.93	1.29	20.7
Appr	oach	1421	16	1496	1.1	0.847	13.7	LOSA	15.0	105.7	0.49	0.45	0.52	42.3
All Vehic	cles	3602	58	3792	1.6	0.847	22.6	LOS B	44.0	313.7	0.73	0.68	0.76	36.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian l	Movem	ent Perf	forman	ce							
Mov ID Crossing	V 01.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
South: Fore S	ped/h it	ped/h	sec		ped	m			sec	m	m/sec
P1 Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	219.8	215.2	0.98
East: Canterb	ury Rd										
P2 Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.7	217.7	0.98
All Pedestrians	100	105	54.3	LOS E	0.2	0.2	0.95	0.95	220.8	216.5	0.98

Site: TCS 602 [Canterbury Rd / Fore St - Construction (Site

Folder: PM)]

Canterbury Rd / Fore St Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 120 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU	IMES	DEM. FLO		Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Fore	St												
1	L2	243	1	256	0.4	0.437	39.5	LOS C	11.9	83.3	0.84	0.80	0.84	27.8
3	R2	186	3	196	1.6	* 0.803	64.8	LOS E	12.1	85.9	1.00	0.91	1.19	25.5
Appro	oach	429	4	452	0.9	0.803	50.4	LOS D	12.1	85.9	0.91	0.85	0.99	26.6
East:	Cante	rbury Rd												
4	L2	178	6	187	3.4	0.833	28.4	LOS B	43.0	306.9	0.88	0.85	0.89	38.2
5	T1	1574	32	1657	2.0	* 0.833	22.4	LOS B	44.0	313.7	0.88	0.83	0.89	35.7
Appro	oach	1752	38	1844	2.2	0.833	23.0	LOS B	44.0	313.7	0.88	0.84	0.89	36.1
West	: Cante	erbury Ro	t											
11	T1	1261	14	1327	1.1	0.463	6.4	LOSA	15.0	105.7	0.43	0.39	0.43	50.4
12	R2	160	2	168	1.3	* 0.847	70.7	LOS F	10.8	76.6	1.00	0.93	1.29	20.7
Appro	oach	1421	16	1496	1.1	0.847	13.7	LOSA	15.0	105.7	0.49	0.45	0.52	42.3
All Vehic	eles	3602	58	3792	1.6	0.847	22.6	LOS B	44.0	313.7	0.73	0.68	0.76	36.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian l	Movem	ent Perf	forman	ce							
Mov ID Crossing	V 01.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
South: Fore S	ped/h it	ped/h	sec		ped	m			sec	m	m/sec
P1 Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	219.8	215.2	0.98
East: Canterb	ury Rd										
P2 Full	50	53	54.3	LOS E	0.2	0.2	0.95	0.95	221.7	217.7	0.98
All Pedestrians	100	105	54.3	LOS E	0.2	0.2	0.95	0.95	220.8	216.5	0.98

Site: TCS 602 [Canterbury Rd / Fore St - TTP (Site Folder: PM)]

Canterbury Rd / Fore St Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 130 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total	JMES HV]	DEM. FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	
South	n: Fore	veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
1	L2	243	1	256	0.4	0.461	44.2	LOS D	13.1	92.3	0.86	0.81	0.86	26.3
3	R2	186	3	196	1.6	* 0.870	75.4	LOS F	13.8	97.7	1.00	0.96	1.30	23.5
Appro	oach	429	4	452	0.9	0.870	57.7	LOS E	13.8	97.7	0.92	0.87	1.05	24.9
East:	Cante	rbury Rd												
4	L2	178	6	187	3.4	0.874	33.2	LOS C	53.6	395.3	0.91	0.90	0.95	36.2
5	T1	1658	116	1745	7.0	* 0.874	27.2	LOS B	54.3	402.6	0.91	0.89	0.95	32.9
Appro	oach	1836	122	1933	6.6	0.874	27.8	LOS B	54.3	402.6	0.91	0.89	0.95	33.4
West	: Cante	erbury Ro	b											
11	T1	1288	41	1356	3.2	0.471	6.0	LOSA	15.6	112.1	0.40	0.37	0.40	50.9
12	R2	160	2	168	1.3	* 0.852	76.0	LOS F	11.7	82.8	1.00	0.93	1.28	19.8
Appro	oach	1448	43	1524	3.0	0.852	13.8	LOSA	15.6	112.1	0.47	0.43	0.50	42.2
All Vehic	cles	3713	169	3908	4.6	0.874	25.8	LOS B	54.3	402.6	0.74	0.71	0.79	34.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Crossing	٧ol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Fore S	t										
P1 Full	50	53	59.3	LOS E	0.2	0.2	0.96	0.96	224.8	215.2	0.96
East: Canterb	ury Rd										
P2 Full	50	53	59.3	LOS E	0.2	0.2	0.96	0.96	226.7	217.7	0.96
All Pedestrians	100	105	59.3	LOS E	0.2	0.2	0.96	0.96	225.8	216.5	0.96

Site: TCS 855 [Canterbury Rd / Jeffrey St / Tincombe St /

Broughton St - AM (Site Folder: AM)]

Canterbury Rd / Jeffrey St / Tincombe St / Broughton St

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	IMES HV 1	FLO [Total	WS HV1	Satn	Delay	Service	QUE [Veh.		Que	Stop		Speed
		veh/h	пv ј veh/h	veh/h	пv ј %	v/c	sec		veh	Dist] m		Rate	Cycles	km/h
East:	Cante	erbury Rd												
4b	L3	12	0	13	0.0	0.391	18.3	LOS B	16.5	120.6	0.52	0.47	0.52	35.8
5	T1	901	49	948	5.4	0.558	22.5	LOS B	21.4	160.0	0.67	0.60	0.67	34.0
6	R2	13	10	14	76.9	* 0.558	42.3	LOS C	21.4	160.0	0.87	0.76	0.87	19.2
Appro	oach	926	59	975	6.4	0.558	22.8	LOS B	21.4	160.0	0.67	0.60	0.67	33.8
North	East:	Jeffrey St	İ											
24b	L3	22	3	23	13.6	0.859	80.5	LOS F	7.3	53.9	1.00	0.97	1.38	15.9
24	L2	8	0	8	0.0	0.859	79.5	LOS F	7.3	53.9	1.00	0.97	1.38	20.7
26a	R1	173	6	182	3.5	* 0.859	78.0	LOS F	7.8	56.0	1.00	0.97	1.37	23.2
Appro	oach	203	9	214	4.4	0.859	78.3	LOS F	7.8	56.0	1.00	0.97	1.37	22.3
North	: Brou	ighton St												
7b	L3	1	0	1	0.0	0.264	64.9	LOS E	2.5	20.5	0.96	0.74	0.96	22.7
7	L2	25	7	26	28.0	0.264	64.3	LOS E	2.5	20.5	0.96	0.74	0.96	11.5
7a	L1	14	0	15	0.0	0.264	62.5	LOS E	2.5	20.5	0.96	0.74	0.96	18.3
9	R2	80	3	84	3.8	* 0.764	75.9	LOS F	5.8	41.6	1.00	0.87	1.22	18.7
Appro	oach	120	10	126	8.3	0.764	71.8	LOS F	5.8	41.6	0.99	0.83	1.13	17.3
West	: Cant	erbury Ro	d											
10	L2	29	0	31	0.0	* 0.858	12.0	LOSA	28.1	204.6	0.48	0.53	0.48	46.1
10a	L1	265	18	279	6.8	0.858	10.9	LOSA	28.1	204.6	0.48	0.53	0.48	47.6
11	T1	1642	67	1728	4.1	0.858	6.3	LOSA	28.5	206.2	0.48	0.48	0.48	48.7
Appro	oach	1936	85	2038	4.4	0.858	7.1	LOSA	28.5	206.2	0.48	0.49	0.48	48.4
All Vehic	eles	3185	163	3353	5.1	0.859	18.6	LOS B	28.5	206.2	0.59	0.56	0.62	37.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

 $\label{eq:hv} \mbox{HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.}$

Pedestrian I	Movem	ent Perf	orman	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time		Aver Speed
	ped/h	ped/h	sec		ped	m ¹			sec	m	m/sed
SouthEast: Tir	ncombe	St									
P5 Full	40	42	10.4	LOS B	0.1	0.1	0.40	0.40	37.7	35.5	0.94
East: Canterbo	ury Rd										

Site: TCS 855 [Canterbury Rd / Jeffrey St / Tincombe St / Broughton St - AM - Construction (Site Folder: AM)]

Canterbury Rd / Jeffrey St / Tincombe St / Broughton St

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site Optimum Cycle Time - Minimum Delay)

Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. E Que	ffective Stop	Aver.	Aver. Speed
טו		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	V/C	sec	Service	[Veh. veh	Dist] m	Que	Rate	Cycles	km/h
East:	Cante	rbury Rd	VC11/11	VCH/H	70	V/-C	300		VOII	- '''				IXITI/T
4b	L3	12	0	13	0.0	0.399	18.4	LOS B	16.7	124.0	0.52	0.48	0.52	35.7
5	T1	917	65	965	7.1	0.570	22.5	LOS B	22.1	166.7	0.67	0.60	0.67	34.0
6	R2	13	10	14	76.9	* 0.570	41.8	LOS C	22.1	166.7	0.87	0.76	0.87	19.4
Appro	oach	942	75	992	8.0	0.570	22.7	LOS B	22.1	166.7	0.67	0.60	0.67	33.8
North	East: 、	Jeffrey St												
24b	L3	22	3	23	13.6	0.859	80.5	LOS F	7.3	53.9	1.00	0.97	1.38	15.9
24	L2	8	0	8	0.0	0.859	79.5	LOS F	7.3	53.9	1.00	0.97	1.38	20.7
26a	R1	173	6	182	3.5	* 0.859	78.0	LOS F	7.8	56.0	1.00	0.97	1.37	23.2
Appro	oach	203	9	214	4.4	0.859	78.3	LOS F	7.8	56.0	1.00	0.97	1.37	22.3
North	: Brou	ghton St												
7b	L3	1	0	1	0.0	0.375	66.3	LOS E	3.3	29.4	0.97	0.76	0.97	22.4
7	L2	35	17	37	48.6	0.375	65.9	LOS E	3.3	29.4	0.97	0.76	0.97	11.2
7a	L1	14	0	15	0.0	0.375	63.9	LOS E	3.3	29.4	0.97	0.76	0.97	18.0
9	R2	80	3	84	3.8	* 0.764	75.9	LOS F	5.8	41.6	1.00	0.87	1.22	18.7
Appro	oach	130	20	137	15.4	0.764	71.8	LOS F	5.8	41.6	0.99	0.83	1.13	16.8
West	: Cante	erbury Rd												
10	L2	40	11	42	27.5	* 0.870	13.1	LOSA	30.1	221.6	0.50	0.55	0.51	44.7
10a	L1	265	18	279	6.8	0.870	11.7	LOSA	30.1	221.6	0.50	0.55	0.51	47.0
11	T1	1644	69	1731	4.2	0.870	7.1	LOSA	30.8	223.2	0.50	0.50	0.51	47.7
Appro	oach	1949	98	2052	5.0	0.870	7.8	LOSA	30.8	223.2	0.50	0.51	0.51	47.5
All Vehic	doc	3224	202	3394	6.3	0.870	19.2	LOS B	30.8	223.2	0.60	0.58	0.64	36.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian N	/lovem	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A	AVERAGE QUE I Ped	BACK OF EUE Dist 1	Prop. Ef Que	fective Stop Rate	Travel Time		Aver Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
SouthEast: Tin	combe	St									
P5 Full	40	42	10.4	LOS B	0.1	0.1	0.40	0.40	37.7	35.5	0.94
East: Canterbu	ury Rd										

Site: TCS 855 [Canterbury Rd / Jeffrey St / Tincombe St /

Broughton St - AM - TTP (Site Folder: AM)]

Canterbury Rd / Jeffrey St / Tincombe St / Broughton St

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service		EUE	Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Cante	erbury Rd	V 311/11	7311/11	70	V/ 5			7011					1(11)/11
4b	L3	12	0	13	0.0	0.399	17.1	LOS B	16.2	121.5	0.50	0.45	0.50	37.1
5	T1	934	82	983	8.8	0.570	21.4	LOS B	22.2	170.1	0.65	0.59	0.65	34.8
6	R2	13	10	14	76.9	* 0.570	41.1	LOS C	22.2	170.1	0.86	0.76	0.86	19.6
Appro	oach	959	92	1009	9.6	0.570	21.6	LOS B	22.2	170.1	0.66	0.59	0.66	34.5
North	East:	Jeffrey St	ţ											
24b	L3	22	3	23	13.6	1.289	330.3	LOS F	17.0	124.6	1.00	1.60	2.93	5.4
24	L2	8	0	8	0.0	1.289	329.4	LOS F	17.0	124.6	1.00	1.60	2.93	7.0
26a	R1	173	6	182	3.5	* 1.289	327.9	LOS F	18.0	129.8	1.00	1.61	2.93	8.0
Appro	oach	203	9	214	4.4	1.289	328.3	LOS F	18.0	129.8	1.00	1.61	2.93	7.7
North	: Brou	ighton St												
7b	L3	1	0	1	0.0	0.375	66.3	LOS E	3.3	29.4	0.97	0.76	0.97	22.4
7	L2	35	17	37	48.6	0.375	65.9	LOS E	3.3	29.4	0.97	0.76	0.97	11.2
7a	L1	14	0	15	0.0	0.375	63.9	LOS E	3.3	29.4	0.97	0.76	0.97	18.0
9	R2	80	3	84	3.8	* 0.764	75.9	LOS F	5.8	41.6	1.00	0.87	1.22	18.7
Appro	oach	130	20	137	15.4	0.764	71.8	LOS F	5.8	41.6	0.99	0.83	1.13	16.8
West	: Cant	erbury Ro	i											
10	L2	40	11	42	27.5	0.911	16.9	LOS B	41.3	312.2	0.60	0.65	0.65	41.6
10a	L1	265	18	279	6.8	0.911	15.5	LOS B	41.3	312.2	0.60	0.65	0.65	44.6
11	T1	1739	164	1831	9.4	* 0.911	10.9	LOSA	41.6	314.9	0.60	0.62	0.65	43.3
Appro	oach	2044	193	2152	9.4	0.911	11.6	LOSA	41.6	314.9	0.60	0.62	0.65	43.5
All Vehic	eles	3336	314	3512	9.4	1.289	36.1	LOS C	41.6	314.9	0.66	0.68	0.81	27.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian N	Movem	ent Perf	ormano	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time		Aver Speed
	ped/h	ped/h	sec		ped	m [*]			sec	m	m/sed
SouthEast: Tir	ncombe	St									
P5 Full	40	42	9.3	LOS A	0.1	0.1	0.38	0.38	36.6	35.5	0.97
East: Canterbo	ury Rd										

Site: TCS 1153 [Marrickville Rd / Petersham Rd - Future Base

(Site Folder: PM)]

Marrickville Rd / Petersham Rd

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 42 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	icle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total		DEM/ FLO		Deg. Satn		Level of Service	95% BA QUE [Veh.		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m [']				km/h
Sout	h: Pete	ersham Ro	d											
1	L2	57	1	60	1.8	0.321	20.6	LOS B	2.0	14.2	0.88	0.74	0.88	33.0
2	T1	28	0	29	0.0	0.321	16.1	LOS B	2.0	14.2	0.88	0.74	0.88	37.8
3	R2	18	0	19	0.0	0.321	20.6	LOS B	2.0	14.2	0.88	0.74	0.88	30.9
Appr	oach	103	1	108	1.0	0.321	19.4	LOS B	2.0	14.2	0.88	0.74	0.88	34.3
East	: Marrio	ckville Rd												
4	L2	26	0	27	0.0	0.385	10.6	LOSA	4.7	33.9	0.66	0.58	0.66	37.9
5	T1	660	17	695	2.6	0.385	7.2	LOSA	4.7	33.9	0.66	0.57	0.66	37.6
6	R2	4	0	4	0.0	0.385	10.6	LOSA	4.7	33.6	0.66	0.57	0.66	40.5
Appr	oach	690	17	726	2.5	0.385	7.3	LOSA	4.7	33.9	0.66	0.57	0.66	37.6
North	n: Pete	rsham Ro	l											
7	L2	34	0	36	0.0	0.478	22.2	LOS B	3.3	23.2	0.92	0.76	0.92	35.0
8	T1	95	0	100	0.0	* 0.478	16.7	LOS B	3.3	23.2	0.92	0.76	0.92	38.2
9	R2	33	2	35	6.1	0.478	21.3	LOS B	3.3	23.2	0.92	0.76	0.92	36.3
Appr	oach	162	2	171	1.2	0.478	18.8	LOS B	3.3	23.2	0.92	0.76	0.92	37.2
West	t: Marri	ckville Ro												
11	T1	424	13	446	3.1	* 0.507	9.9	LOSA	5.6	40.1	0.69	0.71	0.69	35.6
12	R2	168	1	177	0.6	0.507	16.3	LOS B	3.4	24.2	0.79	0.79	0.79	35.9
Appr	oach	592	14	623	2.4	0.507	11.7	LOSA	5.6	40.1	0.72	0.73	0.72	35.7
All Vehic	cles	1547	34	1628	2.2	0.507	11.0	LOSA	5.6	40.1	0.72	0.66	0.72	36.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov _	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Petersl	nam Rd										
P1 Full	50	53	15.5	LOS B	0.1	0.1	0.86	0.86	175.9	208.6	1.19
East: Marrickv	ille Rd										
P2 Full	50	53	15.5	LOS B	0.1	0.1	0.86	0.86	181.4	215.7	1.19
North: Petersh	am Rd										

Site: TCS 1153 [Marrickville Rd / Petersham Rd - Construction

(Site Folder: PM)]

Marrickville Rd / Petersham Rd

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 42 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	IMES HV]	FLO' [Total	WS HV1	Satn	Delay	Service	QUE [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m m		Nate	Cycles	km/h
South	h: Pete	rsham R	d											
1	L2	57	1	60	1.8	0.321	20.6	LOS B	2.0	14.2	0.88	0.74	0.88	33.0
2	T1	28	0	29	0.0	0.321	16.1	LOS B	2.0	14.2	0.88	0.74	88.0	37.8
3	R2	18	0	19	0.0	0.321	20.6	LOS B	2.0	14.2	0.88	0.74	88.0	30.9
Appr	oach	103	1	108	1.0	0.321	19.4	LOS B	2.0	14.2	0.88	0.74	0.88	34.3
East:	Marrio	ckville Rd												
4	L2	26	0	27	0.0	0.385	10.6	LOSA	4.7	33.9	0.66	0.58	0.66	37.9
5	T1	660	17	695	2.6	0.385	7.2	LOSA	4.7	33.9	0.66	0.57	0.66	37.6
6	R2	4	0	4	0.0	0.385	10.6	LOSA	4.7	33.6	0.66	0.57	0.66	40.5
Appr	oach	690	17	726	2.5	0.385	7.3	LOSA	4.7	33.9	0.66	0.57	0.66	37.6
North	n: Pete	rsham Ro	t											
7	L2	34	0	36	0.0	0.478	22.2	LOS B	3.3	23.2	0.92	0.76	0.92	35.0
8	T1	95	0	100	0.0	* 0.478	16.7	LOS B	3.3	23.2	0.92	0.76	0.92	38.2
9	R2	33	2	35	6.1	0.478	21.3	LOS B	3.3	23.2	0.92	0.76	0.92	36.3
Appr	oach	162	2	171	1.2	0.478	18.8	LOS B	3.3	23.2	0.92	0.76	0.92	37.2
West	: Marri	ckville Ro	Ł											
11	T1	424	13	446	3.1	* 0.507	9.9	LOSA	5.6	40.1	0.69	0.71	0.69	35.6
12	R2	168	1	177	0.6	0.507	16.3	LOS B	3.4	24.2	0.79	0.79	0.79	35.9
Appr	oach	592	14	623	2.4	0.507	11.7	LOSA	5.6	40.1	0.72	0.73	0.72	35.7
All Vehic	cles	1547	34	1628	2.2	0.507	11.0	LOSA	5.6	40.1	0.72	0.66	0.72	36.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	VERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Petersh	nam Rd										
P1 Full	50	53	15.5	LOS B	0.1	0.1	0.86	0.86	175.9	208.6	1.19
East: Marrickv	ille Rd										
P2 Full	50	53	15.5	LOS B	0.1	0.1	0.86	0.86	181.4	215.7	1.19
North: Petersh	am Rd										

Site: TCS 1153 [Marrickville Rd / Petersham Rd - TTP (Site

Folder: PM)]

Marrickville Rd / Petersham Rd

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 42 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Pete	ersham R	d											
1	L2	57	1	60	1.8	0.366	21.8	LOS B	2.1	14.8	0.91	0.75	0.91	32.4
2	T1	28	0	29	0.0	0.366	17.2	LOS B	2.1	14.8	0.91	0.75	0.91	37.2
3	R2	18	0	19	0.0	0.366	21.8	LOS B	2.1	14.8	0.91	0.75	0.91	30.4
Appr	oach	103	1	108	1.0	0.366	20.6	LOS B	2.1	14.8	0.91	0.75	0.91	33.7
East:	Marrio	ckville Rd												
4	L2	26	0	27	0.0	0.444	10.1	LOSA	4.9	37.2	0.65	0.57	0.65	38.3
5	T1	710	67	747	9.4	0.444	6.7	LOSA	5.1	38.2	0.65	0.57	0.65	38.2
6	R2	4	0	4	0.0	0.444	10.2	LOSA	5.1	38.2	0.65	0.56	0.65	40.8
Appr	oach	740	67	779	9.1	0.444	6.9	LOSA	5.1	38.2	0.65	0.57	0.65	38.3
North	ı: Pete	rsham Ro	d											
7	L2	34	0	36	0.0	0.542	23.4	LOS B	3.4	24.3	0.95	0.79	0.97	34.4
8	T1	95	0	100	0.0	* 0.542	18.0	LOS B	3.4	24.3	0.95	0.79	0.97	37.5
9	R2	33	2	35	6.1	0.542	22.6	LOS B	3.4	24.3	0.95	0.79	0.97	35.7
Appr	oach	162	2	171	1.2	0.542	20.1	LOS B	3.4	24.3	0.95	0.79	0.97	36.6
West	: Marri	ickville Ro	Ł											
11	T1	424	13	446	3.1	* 0.503	9.1	LOSA	5.6	40.0	0.66	0.69	0.66	36.4
12	R2	168	1	177	0.6	0.503	15.7	LOS B	3.1	21.9	0.77	0.78	0.77	36.2
Appr	oach	592	14	623	2.4	0.503	11.0	LOSA	5.6	40.0	0.69	0.72	0.69	36.3
All Vehic	cles	1597	84	1681	5.3	0.542	10.6	LOSA	5.6	40.0	0.71	0.66	0.72	36.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov _	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Petersl	nam Rd										
P1 Full	50	53	15.5	LOS B	0.1	0.1	0.86	0.86	175.9	208.6	1.19
East: Marrickv	ille Rd										
P2 Full	50	53	15.5	LOS B	0.1	0.1	0.86	0.86	181.4	215.7	1.19
North: Petersh	am Rd										

Site: TCS 1167 [Canterbury Rd / Wonga St Future Base (Site

Folder: AM)]

Canterbury Rd / Wonga St Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle Mo	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU	MES	DEM. FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. E Que	ffective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Cante	rbury Rd												
5	T1	1115	47	1174	4.2	0.451	7.6	LOSA	19.8	143.9	0.72	0.65	0.72	49.6
6	R2	193	8	203	4.1	* 0.578	45.9	LOS D	9.7	70.5	1.00	0.93	1.00	26.3
Appro	oach	1308	55	1377	4.2	0.578	13.3	LOSA	19.8	143.9	0.76	0.69	0.76	43.4
North	ı: Wong	ga St												
7	L2	176	5	185	2.8	0.380	36.8	LOS C	7.4	53.2	0.86	0.79	0.86	28.6
9	R2	67	4	71	6.0	* 0.804	63.2	LOS E	3.9	28.6	1.00	0.91	1.39	26.6
Appro	oach	243	9	256	3.7	0.804	44.1	LOS D	7.4	53.2	0.90	0.82	1.01	27.9
West	: Cante	erbury Ro	l											
10	L2	15	0	16	0.0	* 0.799	17.0	LOS B	27.8	206.0	0.68	0.63	0.68	45.4
11	T1	1741	118	1833	6.8	0.799	11.4	LOSA	27.9	206.6	0.68	0.63	0.68	45.7
Appro	oach	1756	118	1848	6.7	0.799	11.5	LOSA	27.9	206.6	0.68	0.63	0.68	45.7
All Vehic	eles	3307	182	3481	5.5	0.804	14.6	LOS B	27.9	206.6	0.73	0.67	0.73	42.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Noveme	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	EUE Dist]	Prop. Et Que	ffective Stop Rate	Travel Time		Aver. Speed
North: Wonga	ped/h St	ped/h	sec		ped	m			sec	m	m/sec
P3 Full	29	31	8.8	LOS A	0.0	0.0	0.42	0.42	35.0	34.0	0.97
West: Canterb	ury Rd										
P4 Full	27	28	42.4	LOS E	0.1	0.1	0.92	0.92	67.8	33.0	0.49
All Pedestrians	56	59	25.0	LOS C	0.1	0.1	0.66	0.66	50.8	33.5	0.66

Site: TCS 1167 [Canterbury Rd / Wonga St Construction (Site

Folder: AM)]

Canterbury Rd / Wonga St Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle Mo	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU	MES	DEM. FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. E Que	ffective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Cante	rbury Rd												
5	T1	1115	47	1174	4.2	0.451	7.6	LOSA	19.8	143.9	0.72	0.65	0.72	49.6
6	R2	193	8	203	4.1	* 0.578	45.9	LOS D	9.7	70.5	1.00	0.93	1.00	26.3
Appro	oach	1308	55	1377	4.2	0.578	13.3	LOSA	19.8	143.9	0.76	0.69	0.76	43.4
North	ı: Wong	ga St												
7	L2	176	5	185	2.8	0.380	36.8	LOS C	7.4	53.2	0.86	0.79	0.86	28.6
9	R2	67	4	71	6.0	* 0.804	63.2	LOS E	3.9	28.6	1.00	0.91	1.39	26.6
Appro	oach	243	9	256	3.7	0.804	44.1	LOS D	7.4	53.2	0.90	0.82	1.01	27.9
West	: Cante	erbury Ro	l											
10	L2	15	0	16	0.0	* 0.799	17.0	LOS B	27.8	206.0	0.68	0.63	0.68	45.4
11	T1	1741	118	1833	6.8	0.799	11.4	LOSA	27.9	206.6	0.68	0.63	0.68	45.7
Appro	oach	1756	118	1848	6.7	0.799	11.5	LOSA	27.9	206.6	0.68	0.63	0.68	45.7
All Vehic	eles	3307	182	3481	5.5	0.804	14.6	LOS B	27.9	206.6	0.73	0.67	0.73	42.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Noveme	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	EUE Dist]	Prop. Et Que	ffective Stop Rate	Travel Time		Aver. Speed
North: Wonga	ped/h St	ped/h	sec		ped	m			sec	m	m/sec
P3 Full	29	31	8.8	LOS A	0.0	0.0	0.42	0.42	35.0	34.0	0.97
West: Canterb	ury Rd										
P4 Full	27	28	42.4	LOS E	0.1	0.1	0.92	0.92	67.8	33.0	0.49
All Pedestrians	56	59	25.0	LOS C	0.1	0.1	0.66	0.66	50.8	33.5	0.66

Site: TCS 1167 [Canterbury Rd / Wonga St TTP (Site Folder:

AM)]

Canterbury Rd / Wonga St Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle Mo	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU	IMES	DEM. FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. E Que	ffective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Cante	rbury Rd												
5	T1	1119	51	1178	4.6	0.454	7.1	LOSA	21.7	158.1	0.65	0.59	0.65	50.3
6	R2	206	21	217	10.2	* 0.662	66.5	LOS E	12.2	93.0	1.00	0.98	1.01	21.5
Appro	oach	1325	72	1395	5.4	0.662	16.3	LOS B	21.7	158.1	0.70	0.65	0.70	41.0
North	ı: Won	ga St												
7	L2	201	30	212	14.9	0.495	45.1	LOS D	10.6	83.4	0.90	0.81	0.90	25.9
9	R2	67	4	71	6.0	* 0.964	91.1	LOS F	5.2	38.4	1.00	1.07	1.80	21.9
Appro	oach	268	34	282	12.7	0.964	56.6	LOS E	10.6	83.4	0.92	0.87	1.12	24.4
West	: Cante	erbury Ro	i											
10	L2	15	0	16	0.0	* 0.832	19.7	LOS B	37.0	281.9	0.72	0.68	0.73	43.8
11	T1	1811	188	1906	10.4	0.832	14.1	LOSA	37.1	282.5	0.72	0.68	0.73	43.3
Appro	oach	1826	188	1922	10.3	0.832	14.2	LOSA	37.1	282.5	0.72	0.68	0.73	43.3
All Vehic	eles	3419	294	3599	8.6	0.964	18.3	LOS B	37.1	282.5	0.73	0.68	0.75	39.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movemo	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	EUE Dist]	Prop. Et Que	ffective Stop Rate	Travel Time		Aver. Speed
North: Wonga	ped/h St	ped/h	sec		ped	m			sec	m	m/sec
P3 Full	29	31	9.2	LOSA	0.0	0.0	0.39	0.39	35.4	34.0	0.96
West: Canterb	oury Ra										
P4 Full	27	28	52.3	LOS E	0.1	0.1	0.93	0.93	77.7	33.0	0.42
All Pedestrians	56	59	30.0	LOS D	0.1	0.1	0.65	0.65	55.8	33.5	0.60

Site: TCS 1167 [Canterbury Rd / Wonga St Future Base (Site

Folder: PM)]

Canterbury Rd / Wonga St Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle Mo	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU	IMES	DEM. FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. E Que	ffective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Cante	rbury Rd												
5	T1	1775	56	1868	3.2	0.764	11.3	LOSA	37.1	266.9	0.78	0.73	0.78	45.9
6	R2	328	2	345	0.6	* 0.584	35.5	LOS C	12.9	91.0	1.00	0.93	1.00	29.6
Appro	oach	2103	58	2214	2.8	0.764	15.0	LOS B	37.1	266.9	0.82	0.76	0.82	42.0
North	ı: Won	ga St												
7	L2	198	5	208	2.5	0.267	24.2	LOS B	6.5	46.5	0.68	0.74	0.68	33.5
9	R2	154	0	162	0.0	* 0.873	62.5	LOS E	9.0	63.3	1.00	1.01	1.42	26.8
Appro	oach	352	5	371	1.4	0.873	41.0	LOS C	9.0	63.3	0.82	0.86	1.00	29.7
West	: Cante	erbury Ro	i											
10	L2	65	2	68	3.1	* 0.758	16.7	LOS B	18.8	133.8	0.62	0.59	0.63	45.3
11	T1	1219	21	1283	1.7	0.758	11.0	LOSA	19.3	136.9	0.63	0.57	0.63	45.9
Appro	oach	1284	23	1352	1.8	0.758	11.3	LOSA	19.3	136.9	0.63	0.58	0.63	45.8
All Vehic	eles	3739	86	3936	2.3	0.873	16.2	LOS B	37.1	266.9	0.75	0.70	0.77	41.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Noveme	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	EUE Dist]	Prop. Ef Que	ffective Stop Rate	Travel Time		Aver. Speed
North: Wonga	ped/h St	ped/h	sec		ped	m			sec	m	m/sec
P3 Full	29	31	16.8	LOS B	0.1	0.1	0.58	0.58	43.0	34.0	0.79
West: Canterb	ury Ra										
P4 Full	27	28	42.4	LOS E	0.1	0.1	0.92	0.92	67.8	33.0	0.49
All Pedestrians	56	59	29.1	LOS C	0.1	0.1	0.74	0.74	54.9	33.5	0.61

Site: TCS 1167 [Canterbury Rd / Wonga St Construction (Site

Folder: PM)]

Canterbury Rd / Wonga St Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle Mo	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU	IMES	DEM, FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. E Que	ffective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Cante	rbury Rd												
5	T1	1775	56	1868	3.2	0.764	11.3	LOSA	37.1	266.9	0.78	0.73	0.78	45.9
6	R2	328	2	345	0.6	* 0.584	35.5	LOS C	12.9	91.0	1.00	0.93	1.00	29.6
Appro	oach	2103	58	2214	2.8	0.764	15.0	LOS B	37.1	266.9	0.82	0.76	0.82	42.0
North	ı: Won	ga St												
7	L2	198	5	208	2.5	0.267	24.2	LOS B	6.5	46.5	0.68	0.74	0.68	33.5
9	R2	154	0	162	0.0	* 0.873	62.5	LOS E	9.0	63.3	1.00	1.01	1.42	26.8
Appro	oach	352	5	371	1.4	0.873	41.0	LOS C	9.0	63.3	0.82	0.86	1.00	29.7
West	: Cante	erbury Ro	i											
10	L2	65	2	68	3.1	* 0.758	16.7	LOS B	18.8	133.8	0.62	0.59	0.63	45.3
11	T1	1219	21	1283	1.7	0.758	11.0	LOSA	19.3	136.9	0.63	0.57	0.63	45.9
Appro	oach	1284	23	1352	1.8	0.758	11.3	LOSA	19.3	136.9	0.63	0.58	0.63	45.8
All Vehic	eles	3739	86	3936	2.3	0.873	16.2	LOS B	37.1	266.9	0.75	0.70	0.77	41.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Noveme	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	EUE Dist]	Prop. Ef Que	ffective Stop Rate	Travel Time		Aver. Speed
North: Wonga	ped/h St	ped/h	sec		ped	m			sec	m	m/sec
P3 Full	29	31	16.8	LOS B	0.1	0.1	0.58	0.58	43.0	34.0	0.79
West: Canterb	ury Ra										
P4 Full	27	28	42.4	LOS E	0.1	0.1	0.92	0.92	67.8	33.0	0.49
All Pedestrians	56	59	29.1	LOS C	0.1	0.1	0.74	0.74	54.9	33.5	0.61

Site: TCS 1167 [Canterbury Rd / Wonga St TTP (Site Folder:

PM)]

Canterbury Rd / Wonga St Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle Mo	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU	JMES	DEM. FLO		Deg. Satn		Level of Service	QUE	ACK OF EUE	Prop. E Que	ffective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Cante	rbury Rd												
5	T1	1803	84	1898	4.7	0.814	12.2	LOSA	40.4	294.2	0.80	0.75	0.81	45.0
6	R2	384	58	404	15.1	* 0.712	43.2	LOS D	15.0	118.4	1.00	0.97	1.01	27.0
Appro	oach	2187	142	2302	6.5	0.814	17.7	LOS B	40.4	294.2	0.84	0.79	0.84	39.9
North	: Won	ga St												
7	L2	203	10	214	4.9	0.252	21.0	LOS B	6.1	44.6	0.63	0.73	0.63	35.0
9	R2	154	0	162	0.0	* 0.873	62.5	LOS E	9.0	63.3	1.00	1.01	1.42	26.8
Appro	oach	357	10	376	2.8	0.873	38.9	LOS C	9.0	63.3	0.79	0.85	0.97	30.3
West	: Cante	erbury Ro	d											
10	L2	65	2	68	3.1	* 0.878	23.2	LOS B	27.1	194.9	0.79	0.79	0.88	41.7
11	T1	1241	43	1306	3.5	0.878	17.4	LOS B	27.6	199.2	0.79	0.78	0.87	40.5
Appro	oach	1306	45	1375	3.4	0.878	17.7	LOS B	27.6	199.2	0.79	0.78	0.87	40.6
All Vehic	les	3850	197	4053	5.1	0.878	19.6	LOS B	40.4	294.2	0.82	0.79	0.87	38.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movemo	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	ffective Stop Rate	Travel Time		Aver. Speed
North: Wonga	ped/h St	ped/h	sec		ped	m			sec	m	m/sec
P3 Full	29	31	19.9	LOS B	0.1	0.1	0.63	0.63	46.0	34.0	0.74
West: Canterb	oury Ra										
P4 Full	27	28	42.4	LOS E	0.1	0.1	0.92	0.92	67.8	33.0	0.49
All Pedestrians	56	59	30.7	LOS D	0.1	0.1	0.77	0.77	56.5	33.5	0.59

Site: TCS 1203 [Chapel Rd / Rickard Rd - Future Base (Site

Folder: AM)]

Chapel Rd / Rickard Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: Cha	pel Rd												
1 2	L2 T1	89 186	0 3	94 196	0.0 1.6	0.336 0.336	16.6 14.9	LOS B LOS B	2.6 2.6	18.6 18.6	0.84 0.88	0.72 0.71	0.84 0.88	21.5 27.0
Appr	oach	275	3	289	1.1	0.336	15.4	LOS B	2.6	18.6	0.87	0.71	0.87	25.2
East:	Ricka	rd Rd												
4 5	L2 T1	80 241	3 13	84 254	3.8 5.4	0.471 0.471	22.0 16.4	LOS B	3.0 3.2	22.0 23.7	0.93 0.93	0.77 0.75	0.93 0.93	29.0 31.0
6	R2	93	25	98	26.9	0.443	24.3	LOS B	1.9	16.6	0.95	0.77	0.95	25.9
Appr	oach	414	41	436	9.9	0.471	19.2	LOS B	3.2	23.7	0.93	0.76	0.93	29.2
North	n: Cha _l	oel Rd												
7 8	L2 T1	118 231	25 9	124 243	21.2 3.9	0.174 * 0.823	11.8 24.8	LOS A LOS B	1.4 6.5	11.4 46.7	0.58 1.00	0.71 1.02	0.58 1.46	33.9 21.4
9	R2	34	1	36	2.9	0.823	27.9	LOS B	6.5	46.7	1.00	1.02	1.47	15.0
Appr	oach	383	35	403	9.1	0.823	21.1	LOS B	6.5	46.7	0.87	0.92	1.19	24.0
West	:: Ricka	ard Rd												
10	L2	67	1	71	1.5	* 0.734	24.3	LOS B	5.7	40.7	0.99	0.92	1.23	22.1
11	T1	458	9	482	2.0	0.734	19.1	LOS B	5.9	42.1	0.99	0.92	1.22	29.0
12	R2	129	0	136	0.0	* 0.487	23.5	LOS B	2.7	18.6	0.96	0.78	0.96	20.0
Appr	oach	654	10	688	1.5	0.734	20.5	LOS B	5.9	42.1	0.98	0.89	1.17	26.4
All Vehic	cles	1726	89	1817	5.2	0.823	19.5	LOS B	6.5	46.7	0.93	0.84	1.07	26.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Input	Dem.	Aver.	· ·	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m [']			sec	m	m/sec
South: Chape	l Rd										
P1 Full	50	53	14.5	LOS B	0.1	0.1	0.85	0.85	180.0	215.2	1.20
East: Rickard	Rd										
P2 Full	50	53	14.5	LOS B	0.1	0.1	0.85	0.85	183.3	219.5	1.20
North: Chapel	Rd										

Site: TCS 1203 [Chapel Rd / Rickard Rd - Construction (Site

Folder: AM)]

Chapel Rd / Rickard Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	icle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Cha	pel Rd												
1	L2	89	0	94	0.0	0.336	16.6	LOS B	2.6	18.6	0.84	0.72	0.84	21.5
2	T1	186	3	196	1.6	0.336	14.9	LOS B	2.6	18.6	0.88	0.71	0.88	27.0
Appr	oach	275	3	289	1.1	0.336	15.4	LOS B	2.6	18.6	0.87	0.71	0.87	25.2
East	: Ricka	rd Rd												
4	L2	90	13	95	14.4	0.501	22.3	LOS B	3.1	23.3	0.93	0.77	0.93	28.6
5	T1	241	13	254	5.4	0.501	16.5	LOS B	3.5	25.4	0.93	0.76	0.93	30.9
6	R2	93	25	98	26.9	0.443	24.3	LOS B	1.9	16.6	0.95	0.77	0.95	25.9
Appr	oach	424	51	446	12.0	0.501	19.4	LOS B	3.5	25.4	0.94	0.76	0.94	29.1
North	n: Chap	oel Rd												
7	L2	118	25	124	21.2	0.174	11.8	LOSA	1.4	11.4	0.58	0.71	0.58	33.9
8	T1	231	9	243	3.9	* 0.823	24.8	LOS B	6.5	46.7	1.00	1.02	1.46	21.4
9	R2	34	1	36	2.9	0.823	27.9	LOS B	6.5	46.7	1.00	1.02	1.47	15.0
Appr	oach	383	35	403	9.1	0.823	21.1	LOS B	6.5	46.7	0.87	0.92	1.19	24.0
Wes	t: Ricka	ard Rd												
10	L2	67	1	71	1.5	* 0.734	24.3	LOS B	5.7	40.7	0.99	0.92	1.23	22.1
11	T1	458	9	482	2.0	0.734	19.1	LOS B	5.9	42.1	0.99	0.92	1.22	29.0
12	R2	129	0	136	0.0	* 0.487	23.5	LOS B	2.7	18.6	0.96	0.78	0.96	20.0
Appr	oach	654	10	688	1.5	0.734	20.5	LOS B	5.9	42.1	0.98	0.89	1.17	26.4
All Vehic	cles	1736	99	1827	5.7	0.823	19.6	LOS B	6.5	46.7	0.93	0.84	1.07	26.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov _	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Chape	Rd										
P1 Full	50	53	14.5	LOS B	0.1	0.1	0.85	0.85	180.0	215.2	1.20
East: Rickard	Rd										
P2 Full	50	53	14.5	LOS B	0.1	0.1	0.85	0.85	183.3	219.5	1.20
North: Chapel	Rd										

Site: TCS 1203 [Chapel Rd / Rickard Rd - TTP (Site Folder:

AM)]

Chapel Rd / Rickard Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	icle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Cha	pel Rd												
1 2	L2 T1	89 202	0 19	94 213	0.0 9.4	0.282 0.282	16.8 14.9	LOS B	3.0 3.0	22.0 22.0	0.77 0.80	0.69 0.67	0.77 0.80	22.6 27.0
Appr	oach	291	19	306	6.5	0.282	15.5	LOS B	3.0	22.0	0.79	0.68	0.79	25.7
East	: Ricka	rd Rd												
4	L2	90	13	95	14.4	0.413	23.9	LOS B	3.6	27.2	0.89	0.76	0.89	27.7
5	T1	241	13	254	5.4	0.413	18.1	LOS B	4.0	29.1	0.89	0.73	0.89	29.5
6	R2	93	25	98	26.9	0.554	30.9	LOS C	2.5	21.7	0.98	0.80	1.06	22.8
Appr	oach	424	51	446	12.0	0.554	22.1	LOS B	4.0	29.1	0.91	0.75	0.93	27.2
North	n: Chap	oel Rd												
7	L2	118	25	124	21.2	0.161	13.2	LOSA	1.7	13.9	0.57	0.71	0.57	32.7
8	T1	245	23	258	9.4	* 0.647	21.1	LOS B	6.8	51.1	0.93	0.84	0.99	23.4
9	R2	34	1	36	2.9	0.647	24.2	LOS B	6.8	51.1	0.93	0.84	0.99	16.2
Appr	oach	397	49	418	12.3	0.647	19.0	LOS B	6.8	51.1	0.83	0.80	0.87	25.2
West	t: Ricka	ard Rd												
10	L2	67	1	71	1.5	* 0.609	24.5	LOS B	6.3	44.7	0.94	0.81	0.97	22.0
11	T1	458	9	482	2.0	0.609	19.3	LOS B	6.4	45.9	0.94	0.80	0.97	28.8
12	R2	129	0	136	0.0	* 0.609	30.1	LOS C	3.5	24.4	0.99	0.82	1.10	17.2
Appr	oach	654	10	688	1.5	0.609	22.0	LOS B	6.4	45.9	0.95	0.81	0.99	25.5
All Vehic	cles	1766	129	1859	7.3	0.647	20.3	LOS B	6.8	51.1	0.89	0.77	0.92	25.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov _	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Chape	Rd										
P1 Full	50	53	19.4	LOS B	0.1	0.1	0.88	0.88	184.9	215.2	1.16
East: Rickard	Rd										
P2 Full	50	53	19.4	LOS B	0.1	0.1	0.88	0.88	188.2	219.5	1.17
North: Chapel	Rd										

Site: TCS 1203 [Chapel Rd / Rickard Rd - Future Base (Site

Folder: PM)]

Chapel Rd / Rickard Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 60 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Cha	pel Rd												
1	L2	195	1	205	0.5	0.433	19.2	LOS B	6.3	44.0	0.80	0.74	0.80	19.8
2	T1	294	2	309	0.7	0.433	18.6	LOS B	6.3	44.0	0.85	0.72	0.85	24.6
Appr	oach	489	3	515	0.6	0.433	18.8	LOS B	6.3	44.0	0.83	0.73	0.83	22.6
East	Ricka	rd Rd												
4	L2	157	6	165	3.8	* 0.872	38.7	LOS C	13.6	97.2	1.00	1.08	1.42	21.2
5	T1	609	6	641	1.0	0.872	32.7	LOS C	14.8	104.2	1.00	1.08	1.40	21.3
6	R2	238	32	251	13.4	* 0.915	47.1	LOS D	9.7	75.7	1.00	1.12	1.71	17.7
Appr	oach	1004	44	1057	4.4	0.915	37.0	LOS C	14.8	104.2	1.00	1.09	1.48	20.2
North	n: Chap	oel Rd												
7	L2	199	27	209	13.6	0.247	14.4	LOSA	3.4	26.8	0.59	0.73	0.59	32.4
8	T1	367	8	386	2.2	* 0.903	39.2	LOS C	16.0	114.2	1.00	1.14	1.51	16.3
9	R2	34	1	36	2.9	0.903	42.2	LOS C	16.0	114.2	1.00	1.14	1.51	11.8
Appr	oach	600	36	632	6.0	0.903	31.1	LOS C	16.0	114.2	0.86	1.01	1.21	19.9
West	: Ricka	ard Rd												
10	L2	87	0	92	0.0	0.620	27.7	LOS B	7.6	54.2	0.94	0.81	0.96	20.0
11	T1	437	12	460	2.7	0.620	22.3	LOS B	7.6	54.2	0.93	0.79	0.95	26.6
12	R2	122	0	128	0.0	0.415	30.5	LOS C	3.5	24.8	0.94	0.78	0.94	17.0
Appr	oach	646	12	680	1.9	0.620	24.6	LOS B	7.6	54.2	0.93	0.79	0.95	23.8
All Vehic	cles	2739	95	2883	3.5	0.915	29.6	LOS C	16.0	114.2	0.92	0.94	1.18	21.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Input	Dem.	Aver.	· ·	AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m [']			sec	m	m/sec
South: Chape	l Rd										
P1 Full	50	53	24.4	LOS C	0.1	0.1	0.90	0.90	189.9	215.2	1.13
East: Rickard	Rd										
P2 Full	50	53	24.4	LOS C	0.1	0.1	0.90	0.90	193.2	219.5	1.14
North: Chapel	Rd										

Site: TCS 1203 [Chapel Rd / Rickard Rd - Construction (Site

Folder: PM)]

Chapel Rd / Rickard Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 60 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Cha	pel Rd												
1 2	L2 T1	195 294	1 2	205 309	0.5 0.7	0.433 0.433	19.2 18.6	LOS B LOS B	6.3 6.3	44.0 44.0	0.80 0.85	0.74 0.72	0.80 0.85	19.8 24.6
Appr	oach	489	3	515	0.6	0.433	18.8	LOS B	6.3	44.0	0.83	0.73	0.83	22.6
East:	Ricka	rd Rd												
4	L2	167	16	176	9.6	0.896	42.0	LOS C	14.4	104.7	1.00	1.13	1.51	20.1
5	T1	609	6	641	1.0	* 0.896	35.7	LOS C	15.9	112.5	1.00	1.12	1.49	20.1
6	R2	238	32	251	13.4	* 0.915	47.1	LOS D	9.7	75.7	1.00	1.12	1.71	17.7
Appr	oach	1014	54	1067	5.3	0.915	39.4	LOS C	15.9	112.5	1.00	1.12	1.54	19.5
North	ı: Chap	oel Rd												
7	L2	199	27	209	13.6	0.247	14.4	LOSA	3.4	26.8	0.59	0.73	0.59	32.4
8	T1	367	8	386	2.2	* 0.903	39.2	LOS C	16.0	114.2	1.00	1.14	1.51	16.3
9	R2	34	1	36	2.9	0.903	42.2	LOS C	16.0	114.2	1.00	1.14	1.51	11.8
Appr	oach	600	36	632	6.0	0.903	31.1	LOS C	16.0	114.2	0.86	1.01	1.21	19.9
West	: Ricka	ard Rd												
10	L2	87	0	92	0.0	0.620	27.7	LOS B	7.6	54.2	0.94	0.81	0.96	20.0
11	T1	437	12	460	2.7	0.620	22.3	LOS B	7.6	54.2	0.93	0.79	0.95	26.6
12	R2	122	0	128	0.0	0.415	30.5	LOS C	3.5	24.8	0.94	0.78	0.94	17.0
Appr	oach	646	12	680	1.9	0.620	24.6	LOS B	7.6	54.2	0.93	0.79	0.95	23.8
All Vehic	eles	2749	105	2894	3.8	0.915	30.5	LOS C	16.0	114.2	0.92	0.95	1.20	20.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE		Que	Stop	Time	Dist. 9	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Chapel	Rd										
P1 Full	50	53	24.4	LOS C	0.1	0.1	0.90	0.90	189.9	215.2	1.13
East: Rickard	Rd										
P2 Full	50	53	24.4	LOS C	0.1	0.1	0.90	0.90	193.2	219.5	1.14
North: Chapel	Rd										

Site: TCS 1203 [Chapel Rd / Rickard Rd - TTP (Site Folder:

PM)]

Chapel Rd / Rickard Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Cha	pel Rd												
1	L2	195	1	205	0.5	0.505	21.4	LOS B	7.4	52.9	0.79	0.74	0.79	18.8
2	T1	312	20	328	6.4	0.505	20.2	LOS B	7.4	52.9	0.83	0.71	0.83	23.6
Appr	oach	507	21	534	4.1	0.505	20.6	LOS B	7.4	52.9	0.82	0.72	0.82	21.7
East	Ricka	rd Rd												
4	L2	167	16	176	9.6	* 0.867	42.2	LOS C	15.5	112.9	1.00	1.06	1.35	20.0
5	T1	609	6	641	1.0	0.867	36.0	LOS C	17.0	120.2	1.00	1.05	1.33	20.0
6	R2	238	32	251	13.4	* 0.890	48.4	LOS D	10.5	82.3	1.00	1.04	1.52	17.4
Appr	oach	1014	54	1067	5.3	0.890	39.9	LOS C	17.0	120.2	1.00	1.05	1.38	19.3
North	n: Chap	oel Rd												
7	L2	199	27	209	13.6	0.235	14.7	LOS B	3.8	29.3	0.56	0.72	0.56	32.1
8	T1	387	28	407	7.2	* 0.891	41.0	LOS C	18.7	138.8	1.00	1.11	1.40	15.8
9	R2	34	1	36	2.9	0.891	44.0	LOS D	18.7	138.8	1.00	1.11	1.40	11.5
Appr	oach	620	56	653	9.0	0.891	32.7	LOS C	18.7	138.8	0.86	0.99	1.13	19.3
West	: Ricka	ard Rd												
10	L2	87	0	92	0.0	0.614	30.6	LOS C	8.9	63.5	0.94	0.80	0.94	18.6
11	T1	437	12	460	2.7	0.614	25.1	LOS B	8.9	63.5	0.92	0.78	0.92	25.0
12	R2	122	0	128	0.0	0.403	34.1	LOS C	4.1	28.5	0.93	0.78	0.93	15.8
Appr	oach	646	12	680	1.9	0.614	27.5	LOS B	8.9	63.5	0.93	0.78	0.93	22.2
All Vehic	cles	2787	143	2934	5.1	0.891	31.9	LOS C	18.7	138.8	0.92	0.92	1.12	20.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	UE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m [*]			sec	m	m/sec
South: Chapel	Rd										
P1 Full	50	53	29.3	LOS C	0.1	0.1	0.92	0.92	194.9	215.2	1.10
East: Rickard	Rd										
P2 Full	50	53	29.3	LOS C	0.1	0.1	0.92	0.92	198.2	219.5	1.11
North: Chapel	Rd										

Site: TCS 1299 [Haldon St / The Boulevarde - Future Base (Site

Folder: AM)]

Haldon St / The Boulevarde Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 83 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	icle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Halo		VCII/II	VCII/II	70	V/C	300		VCII	- '''				KIII/II
1	L2	47	8	49	17.0	0.315	22.7	LOS B	1.9	15.2	0.91	0.73	0.91	33.5
2	T1	261	21	275	8.0	* 0.906	45.8	LOS D	11.4	85.4	0.98	1.08	1.44	27.1
Appr	oach	308	29	324	9.4	0.906	42.2	LOS C	11.4	85.4	0.97	1.02	1.36	27.8
East	: The E	Boulevard	е											
4	L2	20	0	21	0.0	0.398	32.7	LOS C	3.4	26.1	0.93	0.78	0.93	30.4
5	T1	89	12	94	13.5	0.398	28.2	LOS B	3.4	26.1	0.93	0.78	0.93	17.8
6	R2	216	14	227	6.5	* 0.923	59.1	LOS E	11.6	85.7	1.00	1.11	1.61	15.1
Appr	oach	325	26	342	8.0	0.923	49.0	LOS D	11.6	85.7	0.98	1.00	1.38	16.5
Nortl	h: Hald	on St												
7	L2	104	3	109	2.9	0.189	20.0	LOS B	3.6	26.1	0.65	0.67	0.65	28.4
8	T1	243	18	256	7.4	0.759	29.5	LOS C	13.7	99.4	0.92	0.99	1.00	31.6
9	R2	159	1	167	0.6	* 0.759	36.3	LOS C	13.7	99.4	0.97	1.05	1.06	21.3
Appr	oach	506	22	533	4.3	0.759	29.7	LOS C	13.7	99.4	0.88	0.94	0.95	28.4
Wes	t: The I	Boulevard	de											
10	L2	160	3	168	1.9	0.225	21.7	LOS B	4.4	31.5	0.69	0.73	0.69	26.6
11	T1	191	31	201	16.2	* 0.931	56.4	LOS D	12.9	102.9	1.00	1.21	1.62	10.9
12	R2	43	6	45	14.0	0.931	61.1	LOS E	12.9	102.9	1.00	1.21	1.62	21.6
Appr	oach	394	40	415	10.2	0.931	42.8	LOS D	12.9	102.9	0.87	1.01	1.24	17.3
All Vehi	cles	1533	117	1614	7.6	0.931	39.7	LOS C	13.7	102.9	0.92	0.99	1.20	23.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Haldon	St										
P1 Full	70	74	32.2	LOS D	0.2	0.2	0.88	0.88	56.0	31.0	0.55
East: The Bou	llevarde										
P2 Full	20	21	15.7	LOS B	0.0	0.0	0.61	0.61	41.1	33.0	0.80
North: Haldon	St										

Site: TCS 1299 [Haldon St / The Boulevarde - Construction

(Site Folder: AM)]

Haldon St / The Boulevarde Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Halo	lon St												
1 2	L2 T1	54 269	15 29	57 283	27.8 10.8	0.332 * 0.955	23.3 59.7	LOS B LOS E	2.2 14.3	17.7 109.6	0.90 0.98	0.74 1.18	0.90 1.59	32.9 23.8
Appr	oach	323	44	340	13.6	0.955	53.6	LOS D	14.3	109.6	0.97	1.11	1.48	24.8
East:	The E	Boulevard	е											
4	L2	20	0	21	0.0	0.399	35.9	LOS C	3.8	28.9	0.94	0.79	0.94	29.2
5	T1 R2	89 216	12 14	94 227	13.5 6.5	0.399 * 0.957	31.4 71.6	LOS C LOS F	3.8 13.4	28.9 99.3	0.94 1.00	0.79 1.16	0.94 1.72	16.6 13.2
Appr		325	26	342	8.0	0.957	58.4	LOS E	13.4	99.3	0.98	1.04	1.46	14.6
North	n: Hald	on St												
7	L2	104	3	109	2.9	0.182	20.0	LOS B	3.8	27.4	0.62	0.66	0.62	28.4
8	T1	251	26	264	10.4	0.731	29.4	LOS C	14.4	105.9	0.90	0.97	0.94	31.7
9 Appr	R2 oach	159 514	30	167 541	0.6 5.8	* 0.731 0.731	36.2 29.6	LOS C	14.4 14.4	105.9 105.9	0.95 0.86	1.02 0.92	0.99	21.3
West	: The I	Boulevard	le											
10	L2	160	3	168	1.9	0.219	22.3	LOS B	4.7	33.3	0.67	0.73	0.67	26.3
11	T1	191	31	201	16.2	* 0.974	73.3	LOS F	15.8	127.4	1.00	1.31	1.77	8.8
12	R2	48	11	51	22.9	0.974	78.1	LOSF	15.8	127.4	1.00	1.31	1.77	18.5
Appr	oach	399	45	420	11.3	0.974	53.4	LOS D	15.8	127.4	0.87	1.08	1.33	15.1
All Vehic	cles	1561	145	1643	9.3	0.974	46.6	LOS D	15.8	127.4	0.91	1.02	1.24	21.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Input	Dem.	Aver.	• •	AVFRAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time		Speed
	ped/h	ped/h	sec		ped	m [*]			sec	m	m/sec
South: Haldon	St										
P1 Full	70	74	34.8	LOS D	0.2	0.2	0.88	0.88	58.6	31.0	0.53
East: The Bou	llevarde										
P2 Full	20	21	15.6	LOS B	0.0	0.0	0.59	0.59	41.0	33.0	0.80
North: Haldon	St										

Site: TCS 1299 [Haldon St / The Boulevarde - TTP (Site Folder:

AM)]

Haldon St / The Boulevarde Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 88 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	icle M	ovemen	t Perfor	mance										
	Turn	INF		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU	JMES HV 1	FLO [Total	WS HV1	Satn	Delay	Service	QUE [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m m		Male	Cycles	km/h
Sout	h: Hald	lon St												
1	L2	54	15	57	27.8	0.323	24.6	LOS B	2.6	21.3	0.89	0.74	0.89	32.3
2	T1	269	29	283	10.8	* 0.931	52.6	LOS D	13.2	100.8	0.98	1.13	1.50	25.4
Appr	oach	323	44	340	13.6	0.931	47.9	LOS D	13.2	100.8	0.96	1.06	1.40	26.2
East	: The B	oulevard	е											
4	L2	20	0	21	0.0	0.479	34.6	LOS C	4.4	36.5	0.95	0.79	0.95	29.7
5	T1	102	25	107	24.5	0.479	30.1	LOS C	4.4	36.5	0.95	0.79	0.95	17.1
6	R2	216	14	227	6.5	* 0.953	69.2	LOS E	13.0	96.4	1.00	1.16	1.72	13.5
Appr	oach	338	39	356	11.5	0.953	55.3	LOS D	13.0	96.4	0.98	1.03	1.44	15.1
North	n: Hald	on St												
7	L2	104	3	109	2.9	0.602	29.4	LOS C	13.0	97.3	0.86	0.77	0.86	24.5
8	T1	251	26	264	10.4	0.602	24.8	LOS B	13.0	97.3	0.86	0.77	0.86	33.7
9	R2	159	1	167	0.6	* 0.628	40.8	LOS C	6.7	47.2	0.99	0.86	1.02	19.0
Appr	oach	514	30	541	5.8	0.628	30.7	LOS C	13.0	97.3	0.90	0.80	0.91	28.0
West	t: The E	Boulevard	de											
10	L2	160	3	168	1.9	0.226	22.8	LOS B	4.7	33.4	0.69	0.73	0.69	26.1
11	T1	261	101	275	38.7	* 0.980	76.0	LOS F	21.3	195.7	1.00	1.42	1.78	8.6
12	R2	48	11	51	22.9	0.980	80.7	LOS F	21.3	195.7	1.00	1.42	1.78	18.1
Appr	oach	469	115	494	24.5	0.980	58.3	LOS E	21.3	195.7	0.89	1.19	1.41	13.7
All Vehic	cles	1644	228	1731	13.9	0.980	47.0	LOS D	21.3	195.7	0.93	1.01	1.26	20.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	VERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Haldon	St										
P1 Full	70	74	33.8	LOS D	0.2	0.2	0.88	0.88	57.6	31.0	0.54
East: The Bou	levarde										
P2 Full	20	21	21.2	LOS C	0.0	0.0	0.69	0.69	46.5	33.0	0.71
North: Haldon	St										

Site: TCS 1299 [Haldon St / The Boulevarde - Future Base (Site

Folder: PM)]

Haldon St / The Boulevarde Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Halc													
1	L2	100	9	105	9.0	0.310	17.2	LOS B	2.2	16.4	0.85	0.74	0.85	35.9
2	T1	275	14	289	5.1	* 0.891	38.8	LOS C	10.9	79.6	0.96	1.08	1.45	29.2
Appr	oach	375	23	395	6.1	0.891	33.0	LOS C	10.9	79.6	0.93	0.99	1.29	30.5
East	The B	oulevard	е											
4	L2	27	2	28	7.4	0.701	33.6	LOS C	6.5	50.3	0.99	0.90	1.12	30.1
5	T1	165	23	174	13.9	0.701	29.0	LOS C	6.5	50.3	0.99	0.90	1.12	17.6
6	R2	234	2	246	0.9	* 0.925	52.3	LOS D	10.9	76.7	1.00	1.15	1.68	16.4
Appr	oach	426	27	448	6.3	0.925	42.1	LOS C	10.9	76.7	1.00	1.03	1.43	17.7
North	n: Hald	on St												
7	L2	103	3	108	2.9	0.473	20.6	LOS B	8.8	64.0	0.77	0.70	0.77	29.4
8	T1	234	13	246	5.6	0.473	16.0	LOS B	8.8	64.0	0.77	0.70	0.77	37.9
9	R2	162	4	171	2.5	* 0.519	28.6	LOS C	5.1	36.4	0.95	0.79	0.95	23.3
Appr	oach	499	20	525	4.0	0.519	21.0	LOS B	8.8	64.0	0.82	0.73	0.82	32.3
West	: The E	Boulevard	le											
10	L2	194	4	204	2.1	0.341	24.0	LOS B	5.4	38.2	0.80	0.77	0.80	25.4
11	T1	148	20	156	13.5	* 0.899	44.8	LOS D	8.4	65.6	1.00	1.13	1.61	12.9
12	R2	41	5	43	12.2	0.899	49.4	LOS D	8.4	65.6	1.00	1.13	1.61	24.3
Appr	oach	383	29	403	7.6	0.899	34.8	LOS C	8.4	65.6	0.90	0.95	1.20	20.2
All Vehic	cles	1683	99	1772	5.9	0.925	32.2	LOS C	10.9	79.6	0.91	0.91	1.17	25.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I											
Mov ID Crossing	Input	Dem.	Aver.		AVERAGE		Prop. Et		Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	:UE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Haldon	St										
P1 Full	70	74	27.5	LOS C	0.1	0.1	0.89	0.89	51.4	31.0	0.60
East: The Bou	levarde										
P2 Full	20	21	14.5	LOS B	0.0	0.0	0.64	0.64	39.9	33.0	0.83
North: Haldon	St										

Site: TCS 1299 [Haldon St / The Boulevarde - Construction

(Site Folder: PM)]

Haldon St / The Boulevarde Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Halo	lon St												
1 2	L2 T1	107 283	16 22	113 298	15.0 7.8	0.304 * 0.876	18.0 40.2	LOS B LOS C	2.6 12.2	20.4 90.8	0.82 0.94	0.74 1.03	0.82 1.33	35.2 28.7
Appr	oach	390	38	411	9.7	0.876	34.1	LOS C	12.2	90.8	0.91	0.95	1.19	30.0
East:	The E	Boulevard	е											
4 5	L2 T1	27 165	2 23	28 174	7.4 13.9	0.641 0.641	35.6 31.0	LOS C LOS C	7.1 7.1	54.9 54.9	0.98 0.98	0.85 0.85	1.01 1.01	29.3 16.8
6	R2	234	2	246	0.9	* 0.904	53.1	LOS D	11.6	81.9	1.00	1.08	1.53	16.3
Appr	oach	426	27	448	6.3	0.904	43.4	LOS D	11.6	81.9	0.99	0.98	1.30	17.4
North	ı: Hald	on St												
7	L2	103	3	108	2.9	0.480	22.2	LOS B	10.1	74.8	0.76	0.69	0.76	28.3
8	T1	242	21	255	8.7	0.480	17.6	LOS B	10.1	74.8	0.76	0.69	0.76	37.1
9	R2	162	4	171	2.5	* 0.509	31.3	LOS C	5.8	41.6	0.94	0.80	0.94	22.2
Appr	oach	507	28	534	5.5	0.509	22.9	LOS B	10.1	74.8	0.82	0.73	0.82	31.4
West	: The I	Boulevard	le											
10	L2	194	4	204	2.1	0.345	26.9	LOS B	6.1	43.7	0.80	0.77	0.80	24.0
11	T1	148	20	156	13.5	* 0.881	47.7	LOS D	9.5	75.2	1.00	1.09	1.48	12.3
12	R2	46	10	48	21.7	0.881	52.4	LOS D	9.5	75.2	1.00	1.09	1.48	23.5
Appr	oach	388	34	408	8.8	0.881	37.9	LOS C	9.5	75.2	0.90	0.93	1.14	19.3
All Vehic	cles	1711	127	1801	7.4	0.904	34.0	LOS C	12.2	90.8	0.90	0.89	1.10	25.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	VERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Haldon	St										
P1 Full	70	74	29.8	LOS C	0.1	0.1	0.87	0.87	53.7	31.0	0.58
East: The Bou	levarde										
P2 Full	20	21	15.6	LOS B	0.0	0.0	0.63	0.63	41.0	33.0	0.80
North: Haldon	St										

Site: TCS 1299 [Haldon St / The Boulevarde - TTP (Site Folder:

PM)]

Haldon St / The Boulevarde Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	icle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Hald	lon St												
1	L2	107	16	113	15.0	0.347	22.3	LOS B	3.5	27.5	0.86	0.75	0.86	33.0
2	T1	283	22	298	7.8	* 0.998	79.0	LOS F	18.3	136.9	0.97	1.33	1.80	20.4
Appr	oach	390	38	411	9.7	0.998	63.4	LOS E	18.3	136.9	0.94	1.17	1.54	22.4
East	: The B	oulevard	е											
4	L2	27	2	28	7.4	0.970	79.2	LOS F	16.8	151.9	0.97	1.36	1.75	18.7
5	T1	227	85	239	37.4	* 0.970	74.7	LOS F	16.8	151.9	0.97	1.36	1.75	8.8
6	R2	234	2	246	0.9	0.700	37.5	LOS C	9.8	68.9	0.91	0.84	0.98	20.2
Appr	oach	488	89	514	18.2	0.970	57.1	LOS E	16.8	151.9	0.94	1.11	1.38	14.0
North	h: Hald	on St												
7	L2	103	3	108	2.9	0.557	28.7	LOS C	12.5	92.8	0.83	0.75	0.83	24.8
8	T1	242	21	255	8.7	0.557	24.1	LOS B	12.5	92.8	0.83	0.75	0.83	34.1
9	R2	162	4	171	2.5	* 0.651	41.9	LOS C	7.1	50.4	0.99	0.88	1.04	18.7
Appr	oach	507	28	534	5.5	0.651	30.7	LOS C	12.5	92.8	0.88	0.79	0.90	27.9
Wes	t: The E	Boulevard	de											
10	L2	194	4	204	2.1	0.374	31.6	LOS C	7.1	50.9	0.83	0.78	0.83	22.1
11	T1	170	42	179	24.7	* 1.003	88.1	LOS F	15.7	132.8	1.00	1.41	1.96	7.6
12	R2	46	10	48	21.7	1.003	92.8	LOS F	15.7	132.8	1.00	1.41	1.96	16.5
Appr	oach	410	56	432	13.7	1.003	61.9	LOS E	15.7	132.8	0.92	1.11	1.43	13.8
All Vehic	cles	1795	211	1889	11.8	1.003	52.1	LOS D	18.3	151.9	0.92	1.03	1.29	19.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	VERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Haldon	St										
P1 Full	70	74	27.3	LOS C	0.1	0.1	0.78	0.78	51.2	31.0	0.61
East: The Bou	levarde										
P2 Full	20	21	20.7	LOS C	0.0	0.0	0.68	0.68	46.1	33.0	0.72
North: Haldon	St										

Site: TCS 1303 [New Canterbury Rd / Duntroon St - Future

Base (Site Folder: AM)]

New Canterbury Rd / Duntroon St

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU	IMES	DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. I Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Dun	troon St												
1	L2	6	0	6	0.0	0.031	45.8	LOS D	0.3	1.8	0.92	0.65	0.92	32.8
3b	R3	79	1	83	1.3	* 0.473	49.0	LOS D	3.6	25.7	0.98	0.77	0.98	32.5
Appro	oach	85	1	89	1.2	0.473	48.8	LOS D	3.6	25.7	0.98	0.77	0.98	32.5
South	nEast:	New Cat	erbury R	d										
21b	L3	16	0	17	0.0	0.120	10.2	LOSA	1.9	14.0	0.31	0.63	0.31	51.8
21a	L1	547	38	576	6.9	0.342	9.1	LOSA	6.8	50.5	0.37	0.66	0.37	50.4
Appro	oach	563	38	593	6.7	0.342	9.1	LOSA	6.8	50.5	0.36	0.66	0.36	50.4
West	New	Canterbu	ry Rd											
12a	R1	1072	82	1128	7.6	* 0.494	9.9	LOSA	11.6	86.8	0.46	0.68	0.46	50.1
12	R2	55	1	58	1.8	0.494	11.3	LOSA	10.3	76.1	0.47	0.69	0.47	49.2
Appro	oach	1127	83	1186	7.4	0.494	10.0	LOSA	11.6	86.8	0.46	0.68	0.46	50.1
All Vehic	les	1775	122	1868	6.9	0.494	11.6	LOSA	11.6	86.8	0.45	0.68	0.45	48.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestria	n Moveme	ent Perf	ormano	е							
Mov ID Crossi	Input ng _{Vol.}	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE	UE	Prop. E Que	Stop	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
South: Dun	troon St										
P1 Full	50	53	37.4	LOS D	0.1	0.1	0.91	0.91	61.3	31.0	0.51
SouthEast:	New Cater	bury Rd									
P5 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	65.7	34.4	0.52
West: New	Canterbury	Rd									
P4 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	65.5	34.1	0.52
All Pedestrians	150 s	158	38.7	LOS D	0.1	0.1	0.93	0.93	64.2	33.2	0.52

Site: TCS 1303 [New Canterbury Rd / Duntroon St -

Construction (Site Folder: AM)]

New Canterbury Rd / Duntroon St

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLL		DEM. FLO		Deg. Satn		Level of Service	95% B <i>A</i> Que	CK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Dun	troon St												
1	L2	6	0	6	0.0	0.031	45.8	LOS D	0.3	1.8	0.92	0.65	0.92	32.8
3b	R3	79	1	83	1.3	* 0.473	49.0	LOS D	3.6	25.7	0.98	0.77	0.98	32.5
Appro	oach	85	1	89	1.2	0.473	48.8	LOS D	3.6	25.7	0.98	0.77	0.98	32.5
South	nEast:	New Cat	erbury R	d										
21b	L3	16	0	17	0.0	0.120	10.2	LOSA	1.9	14.0	0.31	0.63	0.31	51.8
21a	L1	547	38	576	6.9	0.342	9.1	LOSA	6.8	50.5	0.37	0.66	0.37	50.4
Appro	oach	563	38	593	6.7	0.342	9.1	LOSA	6.8	50.5	0.36	0.66	0.36	50.4
West	: New	Canterbu	ıry Rd											
12a	R1	1072	82	1128	7.6	* 0.494	9.9	LOSA	11.6	86.8	0.46	0.68	0.46	50.1
12	R2	55	1	58	1.8	0.494	11.3	LOSA	10.3	76.1	0.47	0.69	0.47	49.2
Appro	oach	1127	83	1186	7.4	0.494	10.0	LOSA	11.6	86.8	0.46	0.68	0.46	50.1
All Vehic	les	1775	122	1868	6.9	0.494	11.6	LOSA	11.6	86.8	0.45	0.68	0.45	48.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Novem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE		Prop. Et Que	ffective Stop	Travel Time	Travel Dist. S	Aver.
٠ - ١٥	V O1.	1 10 00	Delay	Service	[Ped	Dist]	Que	Rate	Tillie	Dist. (peed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Duntro	on St										
P1 Full	50	53	37.4	LOS D	0.1	0.1	0.91	0.91	61.3	31.0	0.51
SouthEast: Ne	ew Cater	bury Rd									
P5 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	65.7	34.4	0.52
West: New Ca	interbury	/ Rd									
P4 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	65.5	34.1	0.52
All Pedestrians	150	158	38.7	LOS D	0.1	0.1	0.93	0.93	64.2	33.2	0.52

Site: TCS 1303 [New Canterbury Rd / Duntroon St - TTP (Site

Folder: AM)]

New Canterbury Rd / Duntroon St

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service	95% B <i>A</i> Que	ACK OF EUE	Prop. I Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Dun	troon St												
1	L2	6	0	6	0.0	0.035	47.0	LOS D	0.3	1.8	0.93	0.65	0.93	32.4
3b	R3	79	1	83	1.3	* 0.526	50.4	LOS D	3.7	26.2	0.99	0.77	0.99	32.1
Appro	oach	85	1	89	1.2	0.526	50.1	LOS D	3.7	26.2	0.99	0.77	0.99	32.1
South	nEast:	New Cat	erbury R	d										
21b	L3	16	0	17	0.0	0.122	9.9	LOSA	1.8	13.8	0.30	0.63	0.30	52.0
21a	L1	555	46	584	8.3	0.346	8.8	LOSA	6.7	50.1	0.35	0.65	0.35	50.6
Appro	oach	571	46	601	8.1	0.346	8.8	LOSA	6.7	50.1	0.35	0.65	0.35	50.7
West	New	Canterbu	ry Rd											
12a	R1	1129	139	1188	12.3	* 0.531	9.8	LOSA	12.3	95.0	0.46	0.68	0.46	50.3
12	R2	55	1	58	1.8	0.531	11.1	LOSA	11.0	84.4	0.47	0.69	0.47	49.4
Appro	oach	1184	140	1246	11.8	0.531	9.9	LOSA	12.3	95.0	0.46	0.69	0.46	50.2
All Vehic	les	1840	187	1937	10.2	0.531	11.4	LOSA	12.3	95.0	0.45	0.68	0.45	49.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Novem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE		Prop. Et Que	ffective Stop	Travel Time	Travel Dist. S	Aver.
٠ - ١٥	V O1.	1 10 00	Delay	Service	[Ped	Dist]	Que	Rate	Tillie	Dist. (peed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Duntro	on St										
P1 Full	50	53	37.4	LOS D	0.1	0.1	0.91	0.91	61.3	31.0	0.51
SouthEast: Ne	ew Cater	bury Rd									
P5 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	65.7	34.4	0.52
West: New Ca	interbury	/ Rd									
P4 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	65.5	34.1	0.52
All Pedestrians	150	158	38.7	LOS D	0.1	0.1	0.93	0.93	64.2	33.2	0.52

Site: TCS 1303 [New Canterbury Rd / Duntroon St - Future

Base (Site Folder: PM)]

New Canterbury Rd / Duntroon St

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehic	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service	95% BA QUE		Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	ı: Dun	troon St												
1	L2	29	0	31	0.0	0.301	53.2	LOS D	1.4	9.8	0.99	0.72	0.99	30.3
3b	R3	33	0	35	0.0	* 0.391	54.7	LOS D	1.6	11.3	1.00	0.73	1.00	31.0
Appro	oach	62	0	65	0.0	0.391	54.0	LOS D	1.6	11.3	1.00	0.72	1.00	30.7
South	East:	New Cat	erbury R	d										
21b	L3	101	1	106	1.0	0.482	9.9	LOSA	9.7	70.0	0.37	0.68	0.37	51.9
21a	L1	1177	49	1239	4.2	0.482	8.0	LOSA	10.2	73.7	0.37	0.67	0.37	51.1
Appro	oach	1278	50	1345	3.9	0.482	8.1	LOSA	10.2	73.7	0.37	0.67	0.37	51.2
West	New	Canterbu	ıry Rd											
12a	R1	709	23	746	3.2	* 0.662	9.7	LOSA	13.3	95.2	0.46	0.68	0.46	50.7
12	R2	60	1	63	1.7	0.662	11.3	LOSA	13.3	95.2	0.53	0.72	0.53	49.2
Appro	oach	769	24	809	3.1	0.662	9.8	LOSA	13.3	95.2	0.46	0.69	0.46	50.6
All Vehic	les	2109	74	2220	3.5	0.662	10.1	LOSA	13.3	95.2	0.42	0.68	0.42	50.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Novem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE		Prop. Et Que	ffective Stop	Travel Time	Travel Dist. S	Aver.
٠ - ١٥	V O1.	1 10 00	Delay	Service	[Ped	Dist]	Que	Rate	Tillie	Dist. (ppeed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Duntro	on St										
P1 Full	50	53	37.4	LOS D	0.1	0.1	0.91	0.91	61.3	31.0	0.51
SouthEast: Ne	ew Cater	bury Rd									
P5 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	65.7	34.4	0.52
West: New Ca	interbury	/ Rd									
P4 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	65.5	34.1	0.52
All Pedestrians	150	158	38.7	LOS D	0.1	0.1	0.93	0.93	64.2	33.2	0.52

Site: TCS 1303 [New Canterbury Rd / Duntroon St -

Construction (Site Folder: PM)]

New Canterbury Rd / Duntroon St

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU		DEM. FLO		Deg. Satn		Level of Service	95% BA Que		Prop. E Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	ո։ Dun	troon St												
1	L2	29	0	31	0.0	0.301	53.2	LOS D	1.4	9.8	0.99	0.72	0.99	30.3
3b	R3	33	0	35	0.0	* 0.391	54.7	LOS D	1.6	11.3	1.00	0.73	1.00	31.0
Appro	oach	62	0	65	0.0	0.391	54.0	LOS D	1.6	11.3	1.00	0.72	1.00	30.7
South	nEast:	New Cat	erbury R	d										
21b	L3	101	1	106	1.0	0.482	9.9	LOSA	9.7	70.0	0.37	0.68	0.37	51.9
21a	L1	1177	49	1239	4.2	0.482	8.0	LOSA	10.2	73.7	0.37	0.67	0.37	51.1
Appro	oach	1278	50	1345	3.9	0.482	8.1	LOSA	10.2	73.7	0.37	0.67	0.37	51.2
West	: New	Canterbu	ıry Rd											
12a	R1	709	23	746	3.2	* 0.662	9.7	LOSA	13.3	95.2	0.46	0.68	0.46	50.7
12	R2	60	1	63	1.7	0.662	11.3	LOSA	13.3	95.2	0.53	0.72	0.53	49.2
Appro	oach	769	24	809	3.1	0.662	9.8	LOSA	13.3	95.2	0.46	0.69	0.46	50.6
All Vehic	eles	2109	74	2220	3.5	0.662	10.1	LOSA	13.3	95.2	0.42	0.68	0.42	50.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Novem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE		Prop. Et Que	ffective Stop	Travel Time	Travel Dist. S	Aver.
٠ - ١٥	V O1.	1 10 00	Delay	Service	[Ped	Dist]	Que	Rate	Tillie	Dist. (ppeed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Duntro	on St										
P1 Full	50	53	37.4	LOS D	0.1	0.1	0.91	0.91	61.3	31.0	0.51
SouthEast: Ne	ew Cater	bury Rd									
P5 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	65.7	34.4	0.52
West: New Ca	interbury	/ Rd									
P4 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	65.5	34.1	0.52
All Pedestrians	150	158	38.7	LOS D	0.1	0.1	0.93	0.93	64.2	33.2	0.52

Site: TCS 1303 [New Canterbury Rd / Duntroon St - TTP (Site

Folder: PM)]

New Canterbury Rd / Duntroon St

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Dun	troon St												
1	L2	29	0	31	0.0	0.417	61.1	LOS E	1.6	11.2	1.00	0.71	1.00	28.3
3b	R3	33	0	35	0.0	* 0.543	63.1	LOS E	1.9	13.1	1.00	0.75	1.08	28.9
Appro	oach	62	0	65	0.0	0.543	62.2	LOS E	1.9	13.1	1.00	0.73	1.04	28.6
South	nEast:	New Cat	erbury R	d										
21b	L3	101	1	106	1.0	0.506	9.7	LOSA	10.6	78.5	0.35	0.67	0.35	52.0
21a	L1	1227	99	1292	8.1	0.506	7.8	LOSA	11.0	82.6	0.35	0.67	0.35	51.3
Appro	oach	1328	100	1398	7.5	0.506	8.0	LOSA	11.0	82.6	0.35	0.67	0.35	51.3
West	: New	Canterbu	ıry Rd											
12a	R1	724	38	762	5.2	* 0.695	9.8	LOSA	15.0	109.3	0.45	0.68	0.45	50.6
12	R2	60	1	63	1.7	0.695	11.6	LOSA	15.0	109.3	0.54	0.73	0.54	49.0
Appro	oach	784	39	825	5.0	0.695	10.0	LOSA	15.0	109.3	0.46	0.69	0.46	50.5
All Vehic	les	2174	139	2288	6.4	0.695	10.2	LOSA	15.0	109.3	0.41	0.68	0.41	49.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Perf	ormano	е							
Mov	Input	Dem.	Aver.		AVERAGE		Prop. Et		Travel		Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	:UE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m m		11010	sec	m	m/sec
South: Duntro	on St										
P1 Full	50	53	42.4	LOS E	0.1	0.1	0.92	0.92	66.3	31.0	0.47
SouthEast: No	ew Cate	bury Rd									
P5 Full	50	53	44.3	LOS E	0.1	0.1	0.94	0.94	70.7	34.4	0.49
West: New Ca	anterbury	y Rd									
P4 Full	50	53	44.3	LOS E	0.1	0.1	0.94	0.94	70.5	34.1	0.48
All Pedestrians	150	158	43.7	LOS E	0.1	0.1	0.94	0.94	69.2	33.2	0.48

Site: TCS 1329 [Burwood Rd / Leylands Parade - Future Base

(Site Folder: PM)]

Burwood Rd / Leylands Pde Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle Mo	ovemen	t Perfor	mance										
	Turn	INF		DEM		Deg.		Level of		ACK OF		Effective	Aver.	Aver.
ID		VOLU	JMES HV]	FLO [Total	ws HV1	Satn	Delay	Service	QUI [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	veh/h	veh/h	% 1	v/c	sec		veh	m ¹			- ,	km/h
Sout	h: Burv	vood Rd												
1	L2	64	0	67	0.0	0.206	20.2	LOS B	3.1	22.9	0.70	0.65	0.70	38.8
2	T1	512	59	539	11.5	* 1.029	82.5	LOS F	36.0	275.4	0.96	1.59	1.99	14.5
3	R2	46	2	48	4.3	1.029	96.7	LOS F	36.0	275.4	1.00	1.73	2.17	17.9
Appr	oach	622	61	655	9.8	1.029	77.1	LOS F	36.0	275.4	0.94	1.50	1.87	16.6
East	Leylar	nds Pde												
4	L2	35	1	37	2.9	0.314	18.9	LOS B	5.6	40.2	0.70	0.61	0.70	38.5
5	T1	201	4	212	2.0	0.314	14.3	LOSA	5.6	40.2	0.70	0.61	0.70	40.2
6	R2	205	4	216	2.0	* 0.661	32.3	LOS C	6.8	48.1	0.98	0.88	1.04	24.2
Appr	oach	441	9	464	2.0	0.661	23.0	LOS B	6.8	48.1	0.83	0.74	0.86	33.2
North	n: Burw	ood Rd												
7	L2	48	1	51	2.1	0.531	22.0	LOS B	10.1	74.7	0.81	0.72	0.81	31.1
8	T1	314	25	331	8.0	0.531	17.5	LOS B	10.1	74.7	0.81	0.72	0.81	32.7
9	R2	62	1	65	1.6	0.536	42.7	LOS D	2.4	17.0	1.00	0.76	1.05	24.5
Appr	oach	424	27	446	6.4	0.536	21.7	LOS B	10.1	74.7	0.84	0.72	0.85	30.7
West	:: Leyla	nds Pde												
10	L2	195	4	205	2.1	0.912	48.9	LOS D	15.0	106.8	1.00	1.18	1.54	23.6
11	T1	129	3	136	2.3	* 0.912	44.5	LOS D	15.0	106.8	1.00	1.18	1.54	28.3
Appr	oach	324	7	341	2.2	0.912	47.2	LOS D	15.0	106.8	1.00	1.18	1.54	25.7
All Vehic	cles	1811	104	1906	5.7	1.029	45.6	LOS D	36.0	275.4	0.90	1.08	1.32	23.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Burwoo	od Rd										
P1 Full	50	53	30.2	LOS D	0.1	0.1	0.93	0.93	56.8	34.5	0.61
East: Leylands	s Pde										
P2 Full	50	53	30.2	LOS D	0.1	0.1	0.93	0.93	56.8	34.5	0.61
North: Burwoo	d Rd										

Site: TCS 1329 [Burwood Rd / Leylands Parade - Construction

(Site Folder: PM)]

Burwood Rd / Leylands Pde Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUI [Veh. veh	ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Burv	vood Rd												
1	L2	64	0	67	0.0	0.200	20.1	LOS B	3.5	26.5	0.66	0.63	0.66	38.8
2	T1	529	76	557	14.4	* 1.000	69.4	LOS E	34.6	270.2	0.94	1.39	1.67	16.4
3	R2	46	2	48	4.3	1.000	82.7	LOS F	34.6	270.2	0.98	1.52	1.83	19.9
Appro	oach	639	78	673	12.2	1.000	65.4	LOS E	34.6	270.2	0.91	1.33	1.58	18.5
East:	Leyla	nds Pde												
4	L2	35	1	37	2.9	0.326	21.8	LOS B	6.6	47.0	0.72	0.63	0.72	36.9
5	T1	201	4	212	2.0	0.326	17.2	LOS B	6.6	47.0	0.72	0.63	0.72	38.7
6	R2	205	4	216	2.0	* 0.694	39.5	LOS C	7.9	55.9	0.99	0.96	1.07	21.7
Appro	oach	441	9	464	2.0	0.694	28.0	LOS B	7.9	55.9	0.84	0.78	0.89	31.0
North	ı: Burw	ood Rd												
7	L2	48	1	51	2.1	0.524	22.4	LOS B	11.4	87.9	0.78	0.70	0.78	30.9
8	T1	331	42	348	12.7	0.524	17.8	LOS B	11.4	87.9	0.78	0.70	0.78	32.5
9	R2	62	1	65	1.6	0.572	47.9	LOS D	2.7	19.4	1.00	0.78	1.08	23.1
Appro	oach	441	44	464	10.0	0.572	22.5	LOS B	11.4	87.9	0.81	0.71	0.82	30.3
West	: Leyla	inds Pde												
10	L2	195	4	205	2.1	0.974	71.6	LOS F	19.8	141.3	1.00	1.32	1.78	18.9
11	T1	129	3	136	2.3	* 0.974	67.2	LOS E	19.8	141.3	1.00	1.32	1.78	23.4
Appro	oach	324	7	341	2.2	0.974	69.8	LOS E	19.8	141.3	1.00	1.32	1.78	20.8
All Vehic	cles	1845	138	1942	7.5	1.000	47.0	LOS D	34.6	270.2	0.89	1.05	1.27	23.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Burwoo	od Rd										
P1 Full	50	53	35.2	LOS D	0.1	0.1	0.94	0.94	61.8	34.5	0.56
East: Leylands	s Pde										
P2 Full	50	53	35.2	LOS D	0.1	0.1	0.94	0.94	61.8	34.5	0.56
North: Burwoo	d Rd										

Site: TCS 1329 [Burwood Rd / Leylands Parade - TTP (Site

Folder: PM)]

Burwood Rd / Leylands Pde Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: Burv	vood Rd												
1 2 3	L2 T1 R2	64 557 46	0 104 2	67 586 48	0.0 18.7 4.3	0.203 * 1.014 1.014	20.3 81.5 97.5	LOS B LOS F LOS F	4.0 43.3 43.3	30.9 348.7 348.7	0.63 0.95 1.00	0.61 1.40 1.54	0.63 1.66 1.84	38.8 14.7 17.8
Appro		667 nds Pde	106	702	15.9	1.014	76.7	LOSF	43.3	348.7	0.92	1.33	1.58	16.6
4 5 6	L2 T1 R2	35 201 205	1 4 4	37 212 216	2.9 2.0 2.0	0.368 0.368 * 0.720	24.7 20.1 45.4	LOS B LOS B LOS D	7.6 7.6 9.0	53.9 53.9 63.7	0.74 0.74 1.00	0.64 0.64 0.99	0.74 0.74 1.10	35.4 37.3 20.1
Appr		441	9	464	2.0	0.720	32.2	LOS C	9.0	63.7	0.86	0.81	0.90	29.4
North		ood Rd												
7 8 9	L2 T1 R2	48 341 62	1 52 1	51 359 65	2.1 15.2 1.6	0.566 0.566 0.615	22.7 18.1 53.3	LOS B LOS D	12.6 12.6 3.1	98.7 98.7 21.9	0.75 0.75 1.00	0.67 0.67 0.80	0.75 0.75 1.12	30.7 32.3 21.8
Appro		451	54	475	12.0	0.615	23.4	LOS B	12.6	98.7	0.79	0.69	0.80	29.8
	•	inds Pde												
10 11	L2 T1	195 129	4 3	205 136	2.1 2.3	0.968 * 0.968	74.3 69.9	LOS F LOS E	21.3 21.3	151.8 151.8	1.00 1.00	1.26 1.26	1.67 1.67	18.5 22.9
Appr	oach	324	7	341	2.2	0.968	72.6	LOS F	21.3	151.8	1.00	1.26	1.67	20.4
All Vehic	cles	1883	176	1982	9.3	1.014	52.8	LOS D	43.3	348.7	0.89	1.04	1.25	21.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov _	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Burwoo	od Rd										
P1 Full	50	53	40.2	LOS E	0.1	0.1	0.95	0.95	66.8	34.5	0.52
East: Leylands	s Pde										
P2 Full	50	53	40.2	LOS E	0.1	0.1	0.95	0.95	66.8	34.5	0.52
North: Burwoo	d Rd										

Site: TCS 1363 [Fifth Ave / Ninth Ave - Future Base (Site

Folder: AM)]

Fifth Ave / Ninth Ave Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 48 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU		DEM/ FLO		Deg. Satn		Level of Service	95% BA Que		Prop. E Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Ninth	Ave												
5	T1	133	3	140	2.3	0.135	5.9	LOSA	1.6	11.6	0.52	0.42	0.52	43.8
6	R2	231	8	243	3.5	* 0.558	17.5	LOS B	4.5	32.2	0.92	0.79	0.92	35.5
Appro	oach	364	11	383	3.0	0.558	13.3	LOSA	4.5	32.2	0.77	0.66	0.77	38.0
North	: Fifth	Ave												
7	L2	185	5	195	2.7	0.235	13.2	LOSA	2.8	20.2	0.64	0.72	0.64	38.1
9	R2	128	5	135	3.9	* 0.452	25.4	LOS B	3.1	22.1	0.94	0.78	0.94	34.7
Appro	oach	313	10	329	3.2	0.452	18.2	LOS B	3.1	22.1	0.77	0.74	0.77	36.4
West	: Ninth	Ave												
10	L2	99	2	104	2.0	* 0.505	23.8	LOS B	4.0	28.5	0.93	0.78	0.93	36.2
11	T1	289	2	304	0.7	0.505	17.0	LOS B	4.6	32.1	0.89	0.73	0.89	35.1
Appro	oach	388	4	408	1.0	0.505	18.7	LOS B	4.6	32.1	0.90	0.74	0.90	35.4
All Vehic	les	1065	25	1121	2.3	0.558	16.7	LOS B	4.6	32.2	0.82	0.71	0.82	36.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Moveme	ent Perf	ormano	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A	AVERAGE QUE	UE	Prop. Ef Que	Stop	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
East: Ninth Av	е										
P2 Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.0	215.2	1.17
North: Fifth Av	e										
P3 Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.7	216.2	1.17
West: Ninth Av	/e										
P4 Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.0	215.2	1.17
All Pedestrians	150	158	18.4	LOS B	0.1	0.1	0.88	0.88	184.2	215.5	1.17

Site: TCS 1363 [Fifth Ave / Ninth Ave - Construction (Site

Folder: AM)]

Fifth Ave / Ninth Ave Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 48 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. E Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Ninth	Ave												
5	T1	133	3	140	2.3	0.135	5.9	LOSA	1.6	11.6	0.52	0.42	0.52	43.8
6	R2	231	8	243	3.5	* 0.558	17.5	LOS B	4.5	32.2	0.92	0.79	0.92	35.5
Appro	oach	364	11	383	3.0	0.558	13.3	LOSA	4.5	32.2	0.77	0.66	0.77	38.0
North	: Fifth	Ave												
7	L2	185	5	195	2.7	0.235	13.2	LOSA	2.8	20.2	0.64	0.72	0.64	38.1
9	R2	128	5	135	3.9	* 0.452	25.4	LOS B	3.1	22.1	0.94	0.78	0.94	34.7
Appro	oach	313	10	329	3.2	0.452	18.2	LOS B	3.1	22.1	0.77	0.74	0.77	36.4
West	: Ninth	Ave												
10	L2	99	2	104	2.0	* 0.505	23.8	LOS B	4.0	28.5	0.93	0.78	0.93	36.2
11	T1	289	2	304	0.7	0.505	17.0	LOS B	4.6	32.1	0.89	0.73	0.89	35.1
Appro	oach	388	4	408	1.0	0.505	18.7	LOS B	4.6	32.1	0.90	0.74	0.90	35.4
All Vehic	les	1065	25	1121	2.3	0.558	16.7	LOS B	4.6	32.2	0.82	0.71	0.82	36.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Moveme	ent Perf	ormano	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A	AVERAGE QUE	UE	Prop. Ef Que	Stop	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
East: Ninth Av	е										
P2 Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.0	215.2	1.17
North: Fifth Av	e										
P3 Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.7	216.2	1.17
West: Ninth Av	/e										
P4 Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.0	215.2	1.17
All Pedestrians	150	158	18.4	LOS B	0.1	0.1	0.88	0.88	184.2	215.5	1.17

Site: TCS 1363 [Fifth Ave / Ninth Ave - TTP (Site Folder: AM)]

Fifth Ave / Ninth Ave Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 48 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU		DEM. FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m m		rtate	Cycles	km/h
East:	Ninth	Ave												
5	T1	142	12	149	8.5	0.142	4.9	LOSA	1.6	12.0	0.48	0.39	0.48	44.7
6	R2	231	8	243	3.5	* 0.529	16.2	LOS B	4.3	30.8	0.89	0.79	0.89	36.3
Appro	oach	373	20	393	5.4	0.529	11.9	LOSA	4.3	30.8	0.74	0.64	0.74	38.9
North	: Fifth	Ave												
7	L2	185	5	195	2.7	0.258	14.7	LOS B	3.0	21.8	0.69	0.73	0.69	37.2
9	R2	128	5	135	3.9	* 0.602	28.4	LOS B	3.3	24.0	0.99	0.83	1.09	33.5
Appro	oach	313	10	329	3.2	0.602	20.3	LOS B	3.3	24.0	0.81	0.77	0.85	35.4
West	: Ninth	Ave												
10	L2	99	2	104	2.0	* 0.567	22.1	LOS B	4.3	31.9	0.90	0.77	0.91	37.1
11	T1	327	40	344	12.2	0.567	15.6	LOS B	4.8	37.0	0.86	0.72	0.87	35.9
Appro	oach	426	42	448	9.9	0.567	17.1	LOS B	4.8	37.0	0.87	0.73	0.88	36.3
All Vehic	les	1112	72	1171	6.5	0.602	16.3	LOS B	4.8	37.0	0.81	0.71	0.82	36.8

 $Site\ Level\ of\ Service\ (LOS)\ Method:\ Delay\ (RTA\ NSW).\ Site\ LOS\ Method\ is\ specified\ in\ the\ Parameter\ Settings\ dialog\ (Site\ tab).$

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pe	destrian N	/loveme	ent Perf	ormano	ce							
Mo ID	v Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE		Prop. Et Que	fective Stop	Travel Time	Travel Dist. S	Aver. Speed
		ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
Eas	st: Ninth Av	е										
P2	Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.0	215.2	1.17
Nor	th: Fifth Av	е										
РЗ	Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.7	216.2	1.17
We	st: Ninth A	/e										
P4	Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.0	215.2	1.17
All Ped	destrians	150	158	18.4	LOS B	0.1	0.1	0.88	0.88	184.2	215.5	1.17

Site: TCS 1363 [Fifth Ave / Ninth Ave - Future Base (Site

Folder: PM)]

Fifth Ave / Ninth Ave Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 48 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. I Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Ninth	Ave												
5	T1	296	4	312	1.4	0.311	7.2	LOSA	4.2	29.9	0.61	0.52	0.61	42.6
6	R2	245	0	258	0.0	* 0.629	19.8	LOS B	5.0	35.3	0.95	0.83	1.01	34.3
Appro	oach	541	4	569	0.7	0.629	12.9	LOSA	5.0	35.3	0.76	0.66	0.79	38.3
North	ı: Fifth	Ave												
7	L2	226	5	238	2.2	0.273	12.8	LOSA	3.4	24.2	0.63	0.72	0.63	38.4
9	R2	183	6	193	3.3	* 0.571	25.1	LOS B	4.4	31.8	0.96	0.81	0.98	34.8
Appro	oach	409	11	431	2.7	0.571	18.3	LOS B	4.4	31.8	0.78	0.76	0.79	36.5
West	: Ninth	Ave												
10	L2	127	0	134	0.0	* 0.585	26.2	LOS B	4.1	28.4	0.97	0.82	1.02	34.8
11	T1	261	0	275	0.0	0.585	18.1	LOS B	5.0	34.8	0.91	0.76	0.94	34.6
Appro	oach	388	0	408	0.0	0.585	20.7	LOS B	5.0	34.8	0.93	0.78	0.96	34.7
All Vehic	eles	1338	15	1408	1.1	0.629	16.8	LOS B	5.0	35.3	0.82	0.73	0.84	36.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pe	destrian N	Novem	ent Perf	formand	се							
Mo ID	v Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a	AVERAGE QUE		Prop. Ef Que	fective Stop	Travel Time	Travel Dist. S	Aver. Speed
				Bolay	0011100	[Ped	Dist]	Quo	Rate	111110		
		ped/h	ped/h	sec		ped	m			sec	m	m/sec
Eas	st: Ninth Av	е										
P2	Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.0	215.2	1.17
No	th: Fifth Av	e										
P3	Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.7	216.2	1.17
We	st: Ninth A	/e										
P4	Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.0	215.2	1.17
All Ped	destrians	150	158	18.4	LOS B	0.1	0.1	0.88	0.88	184.2	215.5	1.17

Site: TCS 1363 [Fifth Ave / Ninth Ave - Construction (Site

Folder: PM)]

Fifth Ave / Ninth Ave Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 48 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. I Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Ninth	Ave												
5	T1	296	4	312	1.4	0.311	7.2	LOSA	4.2	29.9	0.61	0.52	0.61	42.6
6	R2	245	0	258	0.0	* 0.629	19.8	LOS B	5.0	35.3	0.95	0.83	1.01	34.3
Appro	oach	541	4	569	0.7	0.629	12.9	LOSA	5.0	35.3	0.76	0.66	0.79	38.3
North	ı: Fifth	Ave												
7	L2	226	5	238	2.2	0.273	12.8	LOSA	3.4	24.2	0.63	0.72	0.63	38.4
9	R2	183	6	193	3.3	* 0.571	25.1	LOS B	4.4	31.8	0.96	0.81	0.98	34.8
Appro	oach	409	11	431	2.7	0.571	18.3	LOS B	4.4	31.8	0.78	0.76	0.79	36.5
West	: Ninth	Ave												
10	L2	127	0	134	0.0	* 0.585	26.2	LOS B	4.1	28.4	0.97	0.82	1.02	34.8
11	T1	261	0	275	0.0	0.585	18.1	LOS B	5.0	34.8	0.91	0.76	0.94	34.6
Appro	oach	388	0	408	0.0	0.585	20.7	LOS B	5.0	34.8	0.93	0.78	0.96	34.7
All Vehic	eles	1338	15	1408	1.1	0.629	16.8	LOS B	5.0	35.3	0.82	0.73	0.84	36.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pe	destrian N	Novem	ent Perf	formand	се							
Mo ID	v Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a	AVERAGE QUE		Prop. Ef Que	fective Stop	Travel Time	Travel Dist. S	Aver. Speed
				Bolay	0011100	[Ped	Dist]	Quo	Rate	111110		
		ped/h	ped/h	sec		ped	m			sec	m	m/sec
Eas	st: Ninth Av	е										
P2	Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.0	215.2	1.17
No	th: Fifth Av	e										
P3	Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.7	216.2	1.17
We	st: Ninth A	/e										
P4	Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.0	215.2	1.17
All Ped	destrians	150	158	18.4	LOS B	0.1	0.1	0.88	0.88	184.2	215.5	1.17

Site: TCS 1363 [Fifth Ave / Ninth Ave - TTP (Site Folder: PM)]

Fifth Ave / Ninth Ave Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 48 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service	95% BA Que		Prop. E Que	ffective Stop		Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Ninth	Ave												
5	T1	330	38	347	11.5	0.366	6.9	LOSA	4.7	36.4	0.61	0.52	0.61	42.9
6	R2	245	0	258	0.0	* 0.604	18.6	LOS B	5.0	34.7	0.94	0.81	0.97	35.0
Appro	oach	575	38	605	6.6	0.604	11.9	LOSA	5.0	36.4	0.75	0.65	0.76	39.0
North	ı: Fifth	Ave												
7	L2	226	5	238	2.2	0.285	13.5	LOSA	3.5	25.3	0.66	0.73	0.66	38.0
9	R2	183	6	193	3.3	* 0.642	26.9	LOS B	4.6	33.4	0.98	0.85	1.09	34.1
Appro	oach	409	11	431	2.7	0.642	19.5	LOS B	4.6	33.4	0.80	0.79	0.85	35.9
West	: Ninth	Ave												
10	L2	127	0	134	0.0	* 0.579	25.1	LOS B	4.1	29.3	0.95	0.81	0.99	35.4
11	T1	273	12	287	4.4	0.579	17.2	LOS B	4.9	35.9	0.89	0.75	0.91	35.0
Appro	oach	400	12	421	3.0	0.579	19.7	LOS B	4.9	35.9	0.91	0.77	0.94	35.1
All Vehic	cles	1384	61	1457	4.4	0.642	16.4	LOS B	5.0	36.4	0.81	0.72	0.84	36.8

 $Site\ Level\ of\ Service\ (LOS)\ Method:\ Delay\ (RTA\ NSW).\ Site\ LOS\ Method\ is\ specified\ in\ the\ Parameter\ Settings\ dialog\ (Site\ tab).$

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Ped	lestrian N	/loveme	ent Perf	ormano	e							
Mov ID	Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a	AVERAGE QUE		Prop. Ef Que	fective Stop	Travel Time	Travel Dist. S	Aver. Speed
		ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
East	t: Ninth Av	е										
P2	Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.0	215.2	1.17
Nort	h: Fifth Av	е										
P3	Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.7	216.2	1.17
Wes	t: Ninth Av	⁄e										
P4	Full	50	53	18.4	LOS B	0.1	0.1	0.88	0.88	184.0	215.2	1.17
All Ped	estrians	150	158	18.4	LOS B	0.1	0.1	0.88	0.88	184.2	215.5	1.17

CCG MOVEMENT SUMMARY

□□ Common Control Group: CCG1 [CCG1]

■■ Network: N101 [Punchbowl Rd / The Boulevarde / South Terrace Future Base (Network

Folder: PM)]

EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 113 seconds (CCG User-Given Phase Times)

Vehi	cle Mo	vement	Perfor	mance	(CC	G)								
Mov ID	Turn [DEMAND	FLOW	S ARRI FLO		Deg. Satn	Aver. Delay	Level of Service	95% BA QUE		Prop. Que	EffectiveA		Aver.
טו		[Total	HV]	[Total		Salli	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h		v/c	sec		veh	m				km/h
Site:	TCS 17	44 [Punc	hbowl R	Rd / The	Boul	evarde Futu	ıre Base							
East:	The Bo	ulevarde												
4a	L1	480	2.0	480	2.0	0.496	25.5	LOS B	18.1	128.7	0.74	0.79	0.74	8.5
6b	R3	247	1.7	247	1.7	0.832	60.7	LOS E	14.7	104.6	1.00	0.93	1.22	15.7
Appr	oach	727	1.9	727	1.9	0.832	37.5	LOS C	18.1	128.7	0.83	0.84	0.90	12.8
North	nEast: P	unchbow	l Rd											
24b	L3	91	0.0	91	0.0	0.567	30.3	LOS C	20.3	145.9	0.78	0.71	0.78	26.6
25	T1	827	3.8	827	3.8	0.567	24.2	LOS B	20.3	145.9	0.78	0.71	0.78	25.4
Appr	oach	918	3.4	918	3.4	0.567	24.8	LOS B	20.3	145.9	0.78	0.71	0.78	25.5
South	hWest: I	Punchbov	wl Rd											
31	T1	641	3.0	641	3.0	0.477	7.7	LOSA	12.6	90.7	0.39	0.36	0.39	45.6
32a	R1	421	0.0	421	0.0	0.679	35.3	LOS C	15.2	106.1	0.87	0.98	0.87	11.2
Appr	oach	1062	1.8	1062	1.8	0.679	18.7	LOS B	15.2	106.1	0.58	0.61	0.58	28.1
All Ve	ehicles	2707	2.4	2707	2.4	0.832	25.8	LOS B	20.3	145.9	0.72	0.70	0.74	22.4
Site:	TCS 17	44 [Punc	hbowl F	Rd / Sou	th Te	rrace Future	e Base]							
North	nEast: P	unchbow	l Rd											
25	T1	843	3.4	843	3.4	0.629	2.8	LOS A	8.5	61.4	0.20	0.19	0.20	55.5
26	R2	452	0.0	452	0.0	* 0.808	44.0	LOS D	15.2	106.1	0.93	0.88	1.00	25.6
Appr	oach	1295	2.2	1295	2.2	0.808	17.2	LOS B	15.2	106.1	0.46	0.43	0.48	39.6
North	nWest: S	South Ter	race											
27	L2	625	0.0	625	0.0	0.682	23.8	LOS B	22.5	157.7	0.72	0.81	0.72	33.3
29	R2	128	0.0	128	0.0	* 0.974	94.7	LOS F	9.4	65.6	0.94	1.13	1.78	23.0
Appr	oach	754	0.0	754	0.0	0.974	35.9	LOS C	22.5	157.7	0.75	0.86	0.90	29.5
South	hWest: I	Punchbov	wl Rd											
30	L2	213	0.0	213	0.0	0.918	64.6	LOS E	22.8	161.3	0.91	1.05	1.30	28.9
31	T1	431	2.9	431	2.9	* 0.918	39.5	LOS C	22.8	161.3	0.84	0.80	0.98	25.9
Appr	oach	643	2.0	643	2.0	0.918	47.8	LOS D	22.8	161.3	0.86	0.88	1.08	27.3
All Ve	ehicles	2692	1.5	2692	1.5	0.974	29.8	LOS C	22.8	161.3	0.64	0.66	0.74	32.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian Mo	vement	Perforr	nance (C	CG)					
Mov	Dem.	Aver.	Level of	AVERAGE BACK OF	Prop.	Effective	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	OUFUF	Que	Stop	Time	Dist	Speed

CCG MOVEMENT SUMMARY

□□ Common Control Group: CCG1 [CCG1]

■■ Network: N101 [Punchbowl Rd / The Boulevarde / South Terrace Construction (Network

Folder: PM)]

EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 113 seconds (CCG User-Given Phase Times)

Vehi	cle Mo	vement	Perfori	mance	(CC	G)								
Mov ID	Turn [DEMAND	FLOWS	S ARRI FLO		Deg. Satn		Level of Service	95% BA QUE		Prop. Que	EffectiveA Stop	ver. No. Cycles	Aver. Speed
		[Total	HV]	[Total	HV]		Delay	OCIVICO	[Veh.	Dist]	Que	Rate	O y o l o o	Opecu
0.11	T00.47	veh/h	%	veh/h		v/c	sec		veh	m	_	_	_	km/h
		-	nbowl R	d/The	Boul	evarde Cor	struction	J						
East:		ulevarde												
4a	L1	480	2.0	480	2.0	0.496	25.5	LOS B	18.1	128.7	0.74	0.79	0.74	8.5
6b	R3	251	2.9	251	2.9	0.852	62.7	LOSE	15.3	109.5	1.00	0.94	1.26	15.3
Appr	oach	731	2.3	731	2.3	0.852	38.2	LOS C	18.1	128.7	0.83	0.84	0.92	12.6
North	nEast: P	unchbow	l Rd											
24b	L3	94	3.4	94	3.4	0.575	30.3	LOS C	20.4	147.8	0.78	0.72	0.78	26.5
25	T1	831	4.2	831	4.2	0.575	24.2	LOS B	20.4	147.8	0.79	0.71	0.79	25.3
Appr	oach	924	4.1	924	4.1	0.575	24.9	LOS B	20.4	147.8	0.78	0.71	0.78	25.5
South	hWest: F	Punchbov	vl Rd											
31	T1	644	3.4	644	3.4	0.481	7.8	LOSA	12.8	92.3	0.40	0.36	0.40	45.5
32a	R1	421	0.0	421	0.0	0.682	35.6	LOS C	15.2	106.1	0.87	0.99	0.87	11.1
Appr	oach	1065	2.1	1065	2.1	0.682	18.8	LOS B	15.2	106.1	0.58	0.61	0.58	28.0
All Ve	ehicles	2720	2.8	2720	2.8	0.852	26.1	LOS B	20.4	147.8	0.72	0.71	0.74	22.3
Site:	TCS 17	44 [Puncl	hbowl R	d / Sou	th Te	rrace Const	truction]							
North	nEast: P	unchbow	l Rd											
25	T1	843	3.4	843	3.4	0.629	2.8	LOSA	8.5	61.4	0.20	0.19	0.20	55.5
26	R2	455	0.7	455	0.7	* 0.819	44.9	LOS D	15.1	106.1	0.94	0.89	1.02	25.3
Appr	oach	1298	2.4	1298	2.4	0.819	17.6	LOS B	15.1	106.1	0.46	0.43	0.49	39.3
North	nWest: S	South Terr	ace											
27	L2	628	0.5	628	0.5	0.688	23.9	LOS B	22.7	159.9	0.72	0.81	0.72	33.3
29	R2	128	0.0	128	0.0	* 0.977	95.8	LOS F	9.4	66.1	0.94	1.13	1.79	22.8
Appr	oach	757	0.4	757	0.4	0.977	36.1	LOS C	22.7	159.9	0.76	0.86	0.90	29.4
Sout	hWest: F	Punchbov	vl Rd											
30	L2	213	0.0	213	0.0	0.926	67.3	LOS E	23.3	164.7	0.92	1.06	1.33	28.3
31	T1	431	2.9	431	2.9	* 0.926	40.5	LOS C	23.3	164.7	0.84	0.81	0.99	25.6
Appr	oach	643	2.0	643	2.0	0.926	49.4	LOS D	23.3	164.7	0.86	0.89	1.10	26.9
All Ve	ehicles	2698	1.8	2698	1.8	0.977	30.4	LOSC	23.3	164.7	0.64	0.66	0.75	32.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian Mo	vement	Perforr	nance (C	CG)					
Mov	Dem.	Aver.	Level of	AVERAGE BACK OF	Prop.	Effective	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	QUFUF	Que	Stop	Time	Dist.	Speed

CCG MOVEMENT SUMMARY

□□ Common Control Group: CCG1 [CCG1]

Rd / The Boulevarde / South Terrace TTP (Network Folder: PM)]

EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 113 seconds (CCG User-Given Phase Times)

Vehi	cle Mo	vement	Perforr	nance	(CC	G)								
Mov ID	Turn [DEMAND [Total veh/h	FLOWS HV] %	ARRI FLO Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BA QUE [Veh. veh		Prop. Que	EffectiveA Stop Rate	ver. No. Cycles	Aver. Speed km/h
Site:	TCS 17					evarde TTP			70.1					1(11)/11
		ulevarde					,							
4a	L1	545	13.7	545	13.7	0.628	27.5	LOS B	22.5	159.5	0.81	0.83	0.81	7.9
6b	R3	251	2.9	251	2.9	0.852	62.7	LOS E	15.3	109.5	1.00	0.94	1.26	15.3
Appr	oach	796	10.3	796	10.3	0.852	38.6	LOS C	22.5	159.5	0.87	0.86	0.95	12.1
North	nEast: P	unchbow	l Rd											
24b	L3	94	3.4	94	3.4	0.694	32.1	LOS C	26.7	193.2	0.84	0.77	0.84	25.7
25	T1	831	4.2	831	4.2	0.694	26.4	LOS B	26.7	193.2	0.84	0.77	0.85	24.1
Appr	oach	924	4.1	924	4.1	0.694	27.0	LOS B	26.7	193.2	0.84	0.77	0.85	24.3
South	nWest: I	Punchbov	vl Rd											
31	T1	644	3.4	644	3.4	0.481	7.7	LOSA	12.7	91.5	0.39	0.36	0.39	45.6
32a	R1	444	5.2	444	5.2	0.788	44.9	LOS D	15.2	106.1	0.96	1.08	1.02	9.2
Appr	oach	1088	4.2	1088	4.2	0.788	22.9	LOS B	15.2	106.1	0.62	0.65	0.65	24.9
All Ve	ehicles	2808	5.9	2808	5.9	0.852	28.7	LOS C	26.7	193.2	0.77	0.75	0.80	20.7
Site:	TCS 17	44 [Punc	hbowl R	d / Sou	ıth Tei	race TTP]								
North	nEast: P	unchbow	l Rd											
25	T1	908	10.3	908	10.3	0.724	5.7	LOS A	14.8	106.1	0.40	0.37	0.40	51.5
26	R2	455	0.7	455	0.7	* 0.819	47.6	LOS D	15.1	106.1	0.97	0.90	1.05	24.4
Appr	oach	1363	7.1	1363	7.1	0.819	19.7	LOS B	15.1	106.1	0.59	0.55	0.62	37.8
North	West: S	South Teri	race											
27	L2	628	0.5	628	0.5	0.688	23.9	LOS B	22.7	159.9	0.72	0.81	0.72	33.3
29	R2	128	0.0	128	0.0	* 0.977	95.8	LOS F	9.4	66.1	0.94	1.13	1.79	22.8
Appr	oach	757	0.4	757	0.4	0.977	36.1	LOS C	22.7	159.9	0.76	0.86	0.90	29.4
South	nWest: I	unchbov	vl Rd											
30	L2	213	0.0	213	0.0	1.012	112.4	LOS F	34.3	242.9	1.00	1.32	1.76	20.8
31	T1	454	7.9	454	7.9	* 1.012	59.8	LOS E	34.3	242.9	0.88	0.95	1.21	20.2
Appr	oach	666	5.4	666	5.4	1.012	76.6	LOS F	34.3	242.9	0.92	1.06	1.38	20.5
All Ve	ehicles	2786	4.9	2786	4.9	1.012	37.8	LOS C	34.3	242.9	0.71	0.76	0.88	29.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian Mo	vement	Perforr	nance (C	CG)					
Mov	Dem.	Aver.	Level of	AVERAGE BACK OF	Prop.	Effective	Travel	Travel	Aver.
ID Crossing	Flow	Delay	Service	OUFUF	Que	Stop	Time	Dist	Speed

Site: TCS 1817 [Restwell St / South Terrace / Bankstown City

Plaza - AM (Site Folder: General)]

Restwell St / South Terrace / Bankstown City Plaza

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% B <i>A</i> QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Res	twell Stre	et											
1 3 Appro	L2 R2	85 558 643	25 11 36	89 587 677	29.4 2.0 5.6	0.475 * 0.475 0.475	29.8 29.7 29.7	LOS C LOS C	12.8 13.9 13.9	96.9 98.9 98.9	0.79 0.79 0.79	0.79 0.79 0.79	0.79 0.79 0.79	25.9 18.5 19.9
North	ı: Loca	I Access	Road											
7 9	L2 R2	3 50	2 50	3 53	66.7 100.0	* 0.470 0.470	56.7 57.4	LOS E	3.0	38.6 38.6	0.97 0.97	0.77 0.77	0.97 0.97	12.8 19.6
Appro		53 stown Cit	52 ty Plaza	56	98.1	0.470	57.4	LOSE	3.0	38.6	0.97	0.77	0.97	19.3
11 12	T1 R2	24 43	24 43	25 45	100.0 100.0	* 0.468 0.468	47.7 51.7	LOS D LOS D	3.6 3.6	47.4 47.4	0.95 0.95	0.77 0.77	0.95 0.95	22.2 20.9
Appro	oach	67	67	71	100.0	0.468	50.2	LOS D	3.6	47.4	0.95	0.77	0.95	21.3
All Vehic	eles	763	155	803	20.3	0.475	33.4	LOS C	13.9	98.9	0.81	0.79	0.81	20.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Moveme	ent Perf	ormano	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped		Prop. E	ffective Stop Rate	Travel Time	Travel Dist. \$	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Restwe	ell Street										
P1 Full	193	203	48.6	LOS E	0.6	0.6	0.94	0.94	72.9	31.5	0.43
East: South To	errace										
P2 Full	10	11	49.2	LOS E	0.0	0.0	0.95	0.95	74.2	32.5	0.44
North: Local A	ccess R	oad									
P3 Full	69	73	2.6	LOS A	0.0	0.0	0.22	0.22	23.4	27.0	1.15
West: Banksto	own City	Plaza									
P4 Full	85	89	10.4	LOS B	0.1	0.1	0.61	0.61	35.2	32.2	0.91
All Pedestrians	357	376	30.7	LOS D	0.6	0.6	0.72	0.72	54.4	30.8	0.57

Site: TCS 1817 [Restwell St / South Terrace / Bankstown City

Plaza - AM - Construction (Site Folder: General)]

Restwell St / South Terrace / Bankstown City Plaza

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h	PUT JMES HV] veh/h	DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Rest	well Stre		VOII/II		V/ 0			VO11					KITI/TI
1 3	L2 R2	85 558 643	25 11 36	89 587 677	29.4 2.0 5.6	0.475 * 0.475 0.475	29.8 29.7 29.7	LOS C LOS C	12.8 13.9 13.9	96.9 98.9 98.9	0.79 0.79 0.79	0.79 0.79 0.79	0.79 0.79 0.79	25.9 18.5 19.9
Appro		I Access		077	5.0	0.475	29.1	103.0	13.9	90.9	0.79	0.79	0.79	19.9
7 9	L2 R2	3 50	2 50	3 53	66.7 100.0	* 0.470 0.470	56.7 57.4	LOS E LOS E	3.0 3.0	38.6 38.6	0.97 0.97	0.77 0.77	0.97 0.97	12.8 19.6
Appro		53 stown Ci	52 tv Plaza	56	98.1	0.470	57.4	LOS E	3.0	38.6	0.97	0.77	0.97	19.3
11 12	T1 R2	24 43	24 43	25 45	100.0 100.0	* 0.468 0.468	47.7 51.7	LOS D	3.6 3.6	47.4 47.4	0.95 0.95	0.77 0.77	0.95 0.95	22.2 20.9
Appro	oach	67	67	71	100.0	0.468	50.2		3.6	47.4	0.95	0.77	0.95	21.3
Vehic	eles	763	155	803	20.3	0.475	33.4	LOS C	13.9	98.9	0.81	0.79	0.81	20.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Moveme	ent Perf	ormano	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped		Prop. E ⁻ Que	ffective Stop Rate	Travel Time	Travel Dist. \$	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Restwe	ell Street										
P1 Full	193	203	48.6	LOS E	0.6	0.6	0.94	0.94	72.9	31.5	0.43
East: South To	errace										
P2 Full	10	11	49.2	LOS E	0.0	0.0	0.95	0.95	74.2	32.5	0.44
North: Local A	ccess R	oad									
P3 Full	69	73	2.6	LOS A	0.0	0.0	0.22	0.22	23.4	27.0	1.15
West: Banksto	own City	Plaza									
P4 Full	85	89	10.4	LOS B	0.1	0.1	0.61	0.61	35.2	32.2	0.91
All Pedestrians	357	376	30.7	LOS D	0.6	0.6	0.72	0.72	54.4	30.8	0.57

Site: TCS 1817 [Restwell St / South Terrace / Bankstown City

Plaza - AM - TTP (Site Folder: General)]

Restwell St / South Terrace / Bankstown City Plaza

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU		DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Res	twell Stre	et											
1	L2	85	25	89	29.4	0.556	35.1	LOS C	14.2	107.6	0.86	0.82	0.86	24.4
3	R2	562	15	592	2.7	* 0.556	34.9	LOS C	15.4	110.3	0.86	0.82	0.86	17.0
Appro	oach	647	40	681	6.2	0.556	34.9	LOS C	15.4	110.3	0.86	0.82	0.86	18.3
North	ı: Loca	l Access	Road											
7	L2	3	2	3	66.7	* 0.577	57.1	LOS E	4.0	51.2	0.98	0.81	1.03	12.7
9	R2	66	66	69	100.0	0.577	57.8	LOS E	4.0	51.2	0.98	0.81	1.03	19.5
Appro	oach	69	68	73	98.6	0.577	57.8	LOS E	4.0	51.2	0.98	0.81	1.03	19.3
West	: Bank	stown Ci	ty Plaza											
11	T1	62	62	65	100.0	* 0.562	44.1	LOS D	5.6	72.7	0.95	0.79	0.95	23.1
12	R2	43	43	45	100.0	0.562	48.2	LOS D	5.6	72.7	0.95	0.79	0.95	21.7
Appro	oach	105	105	111	100.0	0.562	45.8	LOS D	5.6	72.7	0.95	0.79	0.95	22.5
All Vehic	cles	821	213	864	25.9	0.577	38.2	LOS C	15.4	110.3	0.88	0.81	0.89	19.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Moveme	ent Perf	ormano	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped		Prop. E Que	ffective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Restwe	ell Street	:									
P1 Full	193	203	48.6	LOS E	0.6	0.6	0.94	0.94	72.9	31.5	0.43
East: South Te	errace										
P2 Full	10	11	49.2	LOS E	0.0	0.0	0.95	0.95	74.2	32.5	0.44
North: Local A	ccess R	oad									
P3 Full	69	73	2.8	LOS A	0.1	0.1	0.23	0.23	23.6	27.0	1.14
West: Banksto	own City	Plaza									
P4 Full	85	89	12.5	LOS B	0.1	0.1	0.67	0.67	37.3	32.2	0.86
All Pedestrians	357	376	31.2	LOS D	0.6	0.6	0.74	0.74	54.9	30.8	0.56

Site: TCS 1817 [Restwell St / South Terrace / Bankstown City

Plaza - PM (Site Folder: General)]

Restwell St / South Terrace / Bankstown City Plaza

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU		DEM FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m			0,0.00	km/h
South	n: Rest	well Stre	et											
1	L2	136	43	143	31.6	0.573	24.8	LOS B	17.6	133.9	0.76	0.80	0.76	27.5
3	R2	798	6	840	0.8	* 0.573	25.0	LOS B	19.5	137.6	0.76	0.80	0.76	20.2
Appro	oach	934	49	983	5.2	0.573	25.0	LOS B	19.5	137.6	0.76	0.80	0.76	21.7
North	: Loca	I Access	Road											
7	L2	6	0	6	0.0	* 0.563	65.1	LOS E	2.2	25.9	1.00	0.79	1.10	11.6
9	R2	29	29	31	100.0	0.563	66.5	LOS E	2.2	25.9	1.00	0.79	1.10	18.2
Appro	oach	35	29	37	82.9	0.563	66.2	LOS E	2.2	25.9	1.00	0.79	1.10	17.3
West	: Bank	stown Cit	ty Plaza											
11	T1	31	31	33	100.0	* 0.570	50.8	LOS D	4.1	53.9	0.98	0.81	1.01	21.6
12	R2	42	42	44	100.0	0.570	54.8	LOS D	4.1	53.9	0.98	0.81	1.01	20.3
Appro	oach	73	73	77	100.0	0.570	53.1	LOS D	4.1	53.9	0.98	0.81	1.01	20.9
All Vehic	les	1042	151	1097	14.5	0.573	28.3	LOS B	19.5	137.6	0.78	0.80	0.79	21.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movemo	ent Perf	orman	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped		Prop. E	ffective Stop Rate	Travel Time	Travel Dist. \$	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Restwe	ell Street										
P1 Full	193	203	48.6	LOS E	0.6	0.6	0.94	0.94	72.9	31.5	0.43
East: South To	errace										
P2 Full	10	11	49.2	LOS E	0.0	0.0	0.95	0.95	74.2	32.5	0.44
North: Local A	ccess R	oad									
P3 Full	69	73	1.3	LOS A	0.0	0.0	0.16	0.16	22.1	27.0	1.22
West: Banksto	own City	Plaza									
P4 Full	85	89	8.1	LOS A	0.1	0.1	0.53	0.53	32.9	32.2	0.98
All Pedestrians	357	376	29.9	LOS C	0.6	0.6	0.69	0.69	53.6	30.8	0.58

Site: TCS 1817 [Restwell St / South Terrace / Bankstown City

Plaza - PM - Construction (Site Folder: General)]

Restwell St / South Terrace / Bankstown City Plaza

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU		DEM FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m			0,0.00	km/h
South	n: Rest	well Stre	et											
1	L2	136	43	143	31.6	0.573	24.8	LOS B	17.6	133.9	0.76	0.80	0.76	27.5
3	R2	798	6	840	0.8	* 0.573	25.0	LOS B	19.5	137.6	0.76	0.80	0.76	20.2
Appro	oach	934	49	983	5.2	0.573	25.0	LOS B	19.5	137.6	0.76	0.80	0.76	21.7
North	: Loca	I Access	Road											
7	L2	6	0	6	0.0	* 0.563	65.1	LOS E	2.2	25.9	1.00	0.79	1.10	11.6
9	R2	29	29	31	100.0	0.563	66.5	LOS E	2.2	25.9	1.00	0.79	1.10	18.2
Appro	oach	35	29	37	82.9	0.563	66.2	LOS E	2.2	25.9	1.00	0.79	1.10	17.3
West	: Bank	stown Cit	ty Plaza											
11	T1	31	31	33	100.0	* 0.570	50.8	LOS D	4.1	53.9	0.98	0.81	1.01	21.6
12	R2	42	42	44	100.0	0.570	54.8	LOS D	4.1	53.9	0.98	0.81	1.01	20.3
Appro	oach	73	73	77	100.0	0.570	53.1	LOS D	4.1	53.9	0.98	0.81	1.01	20.9
All Vehic	les	1042	151	1097	14.5	0.573	28.3	LOS B	19.5	137.6	0.78	0.80	0.79	21.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movemo	ent Perf	orman	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped		Prop. E	ffective Stop Rate	Travel Time	Travel Dist. \$	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Restwe	ell Street										
P1 Full	193	203	48.6	LOS E	0.6	0.6	0.94	0.94	72.9	31.5	0.43
East: South To	errace										
P2 Full	10	11	49.2	LOS E	0.0	0.0	0.95	0.95	74.2	32.5	0.44
North: Local A	ccess R	oad									
P3 Full	69	73	1.3	LOS A	0.0	0.0	0.16	0.16	22.1	27.0	1.22
West: Banksto	own City	Plaza									
P4 Full	85	89	8.1	LOS A	0.1	0.1	0.53	0.53	32.9	32.2	0.98
All Pedestrians	357	376	29.9	LOS C	0.6	0.6	0.69	0.69	53.6	30.8	0.58

Site: TCS 1817 [Restwell St / South Terrace / Bankstown City

Plaza - PM - TTP (Site Folder: General)]

Restwell St / South Terrace / Bankstown City Plaza

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total		DEM FLC [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	% -	v/c	sec		veh	m -				km/h
South	n: Rest	well Stre	et											
1	L2	136	43	143	31.6	0.648	28.5	LOS C	19.8	152.9	0.83	0.83	0.83	26.3
3	R2	820	28	863	3.4	* 0.648	28.7	LOS C	21.8	156.9	0.83	0.83	0.83	18.8
Appro	oach	956	71	1006	7.4	0.648	28.7	LOS C	21.8	156.9	0.83	0.83	0.83	20.3
North	ı: Loca	I Access	Road											
7	L2	6	0	6	0.0	* 0.627	62.5	LOS E	3.2	39.6	1.00	0.82	1.13	12.0
9	R2	47	47	49	100.0	0.627	63.9	LOS E	3.2	39.6	1.00	0.82	1.13	18.5
Appro	oach	53	47	56	88.7	0.627	63.7	LOS E	3.2	39.6	1.00	0.82	1.13	18.0
West	: Bank	stown Ci	ty Plaza											
11	T1	49	49	52	100.0	* 0.662	52.0	LOS D	5.3	69.0	0.99	0.89	1.10	21.5
12	R2	42	42	44	100.0	0.662	56.0	LOS D	5.3	69.0	0.99	0.89	1.10	20.2
Appro	oach	91	91	96	100.0	0.662	53.8	LOS D	5.3	69.0	0.99	0.89	1.10	20.9
All Vehic	les	1100	209	1158	19.0	0.662	32.5	LOS C	21.8	156.9	0.85	0.83	0.87	20.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian l	Moveme	ent Perf	ormano	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped		Prop. E Que	ffective Stop Rate	Travel Time	Travel Dist. \$	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Restwe	ell Street										
P1 Full	193	203	48.6	LOS E	0.6	0.6	0.94	0.94	72.9	31.5	0.43
East: South To	errace										
P2 Full	10	11	49.2	LOS E	0.0	0.0	0.95	0.95	74.2	32.5	0.44
North: Local A	ccess R	oad									
P3 Full	69	73	1.8	LOS A	0.0	0.0	0.18	0.18	22.6	27.0	1.20
West: Banksto	own City	Plaza									
P4 Full	85	89	9.1	LOS A	0.1	0.1	0.57	0.57	33.9	32.2	0.95
All Pedestrians	357	376	30.2	LOS D	0.6	0.6	0.71	0.71	53.9	30.8	0.57

Site: TCS 2789 [Joseph St / Georges Av - Future Base (Site

Folder: AM)]

Joseph St / Georges Av Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Practical Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLL		DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective	Aver.	Aver.
טו		Total	HV]	Total	ws HV]	Salli	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	veh/h	veh/h	% _	v/c	sec		veh	m ¹				km/h
South	n: Jose	ph St												
1	L2	26	2	27	7.7	0.870	33.7	LOS C	38.6	286.8	0.94	0.96	1.06	40.5
2	T1	2339	166	2462	7.1	* 0.870	27.1	LOS B	38.7	287.1	0.91	0.93	1.04	42.4
3	R2	173	8	182	4.6	0.659	29.2	LOS C	5.1	37.3	0.99	0.82	1.04	38.6
Appro	oach	2538	176	2672	6.9	0.870	27.3	LOS B	38.7	287.1	0.91	0.93	1.04	42.0
East:	Georg	ge Ave												
4	L2	76	6	80	7.9	0.303	34.2	LOS C	4.9	36.0	0.85	0.74	0.85	35.2
5	T1	208	8	219	3.8	0.523	34.8	LOS C	7.0	50.8	0.92	0.77	0.92	32.3
6	R2	8	1	8	12.5	0.523	41.1	LOS C	7.0	50.8	0.95	0.78	0.95	29.4
Appro	oach	292	15	307	5.1	0.523	34.8	LOS C	7.0	50.8	0.91	0.76	0.91	33.0
North	ı: Jose	ph St												
7	L2	28	0	29	0.0	0.772	34.4	LOS C	21.8	162.6	0.94	0.87	0.99	34.2
8	T1	1485	122	1563	8.2	0.772	27.9	LOS B	22.0	165.0	0.93	0.86	0.98	41.9
9	R2	72	2	76	2.8	* 0.629	54.8	LOS D	3.6	25.5	1.00	0.80	1.11	25.5
Appro	oach	1585	124	1668	7.8	0.772	29.2	LOS C	22.0	165.0	0.93	0.86	0.99	40.8
West	: Geor	ges Av												
10	L2	91	3	96	3.3	0.307	36.8	LOS C	4.8	34.2	0.86	0.77	0.86	32.2
11	T1	157	3	165	1.9	* 0.706	42.2	LOS C	8.2	58.0	0.97	0.85	1.06	29.5
12	R2	49	1	52	2.0	0.706	48.6	LOS D	8.2	58.0	1.00	0.87	1.11	33.4
Appro	oach	297	7	313	2.4	0.706	41.6	LOS C	8.2	58.0	0.94	0.83	1.00	30.9
All Vehic	cles	4712	322	4960	6.8	0.870	29.3	LOS C	38.7	287.1	0.92	0.89	1.01	40.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian May				···		DACK OF	Dran E	factive	Traval	Traval	Avor
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Service	AVERAGE QUE	BACK OF EUE	Prop. Ef Que	Stop	Travel Time	Travel Dist. S	Aver. Speed
	a al /la	حا/ ام م			[Ped	Dist]		Rate			/
East: George	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East. George	Ave										
P2 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	204.8	215.2	1.05
North: Joseph	St										
P3 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	213.2	226.1	1.06
All	100	105	39.3	LOS D	0.1	0.1	0.94	0.94	209.0	220.7	1.06

Site: TCS 2789 [Joseph St / Georges Av - Construction (Site

Folder: AM)]

Joseph St / Georges Av Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Practical Cycle Time)

Vehi	cle M	ovemen	t Perfor	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Jose				- 1	.,,								
1	L2	26	2	27	7.7	0.870	33.7	LOS C	38.6	286.8	0.94	0.96	1.06	40.5
2	T1	2339	166	2462	7.1	* 0.870	27.1	LOS B	38.7	287.1	0.91	0.93	1.04	42.4
3	R2	173	8	182	4.6	0.659	29.2	LOS C	5.1	37.3	0.99	0.82	1.04	38.6
Appro	oach	2538	176	2672	6.9	0.870	27.3	LOS B	38.7	287.1	0.91	0.93	1.04	42.0
East:	Georg	ge Ave												
4	L2	76	6	80	7.9	0.303	34.2	LOS C	4.9	36.0	0.85	0.74	0.85	35.2
5	T1	208	8	219	3.8	0.523	34.8	LOS C	7.0	50.8	0.92	0.77	0.92	32.3
6	R2	8	1	8	12.5	0.523	41.1	LOS C	7.0	50.8	0.95	0.78	0.95	29.4
Appro	oach	292	15	307	5.1	0.523	34.8	LOS C	7.0	50.8	0.91	0.76	0.91	33.0
North	n: Jose	ph St												
7	L2	28	0	29	0.0	0.772	34.4	LOS C	21.8	162.6	0.94	0.87	0.99	34.2
8	T1	1485	122	1563	8.2	0.772	27.9	LOS B	22.0	165.0	0.93	0.86	0.98	41.9
9	R2	72	2	76	2.8	* 0.629	54.8	LOS D	3.6	25.5	1.00	0.80	1.11	25.5
Appro	oach	1585	124	1668	7.8	0.772	29.2	LOS C	22.0	165.0	0.93	0.86	0.99	40.8
West	: Geor	ges Av												
10	L2	91	3	96	3.3	0.307	36.8	LOS C	4.8	34.2	0.86	0.77	0.86	32.2
11	T1	157	3	165	1.9	* 0.706	42.2	LOS C	8.2	58.0	0.97	0.85	1.06	29.5
12	R2	49	1	52	2.0	0.706	48.6	LOS D	8.2	58.0	1.00	0.87	1.11	33.4
Appro	oach	297	7	313	2.4	0.706	41.6	LOS C	8.2	58.0	0.94	0.83	1.00	30.9
All Vehic	cles	4712	322	4960	6.8	0.870	29.3	LOS C	38.7	287.1	0.92	0.89	1.01	40.2

 $Site\ Level\ of\ Service\ (LOS)\ Method:\ Delay\ (RTA\ NSW).\ Site\ LOS\ Method\ is\ specified\ in\ the\ Parameter\ Settings\ dialog\ (Site\ tab).$

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian Mov	Input	Dem.	Aver.	• •	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE		Que	Stop	Time	Dist. S	
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec
East: George	Ave										
P2 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	204.8	215.2	1.05
North: Joseph	St										
P3 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	213.2	226.1	1.06
All	100	105	39.3	LOS D	0.1	0.1	0.94	0.94	209.0	220.7	1.06

Site: TCS 2789 [Joseph St / Georges Av - TTP (Site Folder:

ĀM)]

Joseph St / Georges Av Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Practical Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM.		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU	JMES HV]	FLO [Total	WS HV1	Satn	Delay	Service	QUE [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m m		rtato	Cycles	km/h
South	n: Jose	ph St												
1	L2	26	2	27	7.7	0.874	34.4	LOS C	39.2	291.7	0.94	0.97	1.07	40.2
2	T1	2345	172	2468	7.3	* 0.874	27.8	LOS B	39.3	292.1	0.91	0.94	1.05	42.0
3	R2	173	8	182	4.6	0.709	30.8	LOS C	5.4	39.2	1.00	0.84	1.11	37.8
Appro	oach	2544	182	2678	7.2	0.874	28.1	LOS B	39.3	292.1	0.92	0.94	1.06	41.6
East:	Georg	ge Ave												
4	L2	76	6	80	7.9	0.305	34.2	LOS C	4.9	36.2	0.85	0.74	0.85	35.2
5	T1	208	8	219	3.8	0.526	35.4	LOS C	7.0	51.0	0.93	0.77	0.93	32.1
6	R2	8	1	8	12.5	0.526	41.9	LOS C	7.0	51.0	0.96	0.78	0.96	29.1
Appro	oach	292	15	307	5.1	0.526	35.3	LOS C	7.0	51.0	0.91	0.76	0.91	32.9
North	ı: Jose	ph St												
7	L2	28	0	29	0.0	0.760	33.0	LOS C	21.4	160.5	0.93	0.85	0.96	34.8
8	T1	1491	128	1569	8.6	0.760	26.5	LOS B	21.7	162.8	0.91	0.84	0.96	42.8
9	R2	80	10	84	12.5	* 0.770	57.7	LOS E	4.1	32.0	1.00	0.87	1.32	24.8
Appro	oach	1599	138	1683	8.6	0.770	28.2	LOS B	21.7	162.8	0.92	0.84	0.97	41.4
West	: Geor	ges Av												
10	L2	101	13	106	12.9	0.318	35.5	LOS C	4.8	36.4	0.84	0.77	0.84	32.8
11	T1	157	3	165	1.9	* 0.731	43.1	LOS D	8.6	61.5	0.98	0.86	1.09	29.2
12	R2	49	1	52	2.0	0.731	49.3	LOS D	8.6	61.5	1.00	0.88	1.13	33.1
Appro	oach	307	17	323	5.5	0.731	41.6	LOS C	8.6	61.5	0.94	0.84	1.02	30.9
All Vehic	cles	4742	352	4992	7.4	0.874	29.4	LOS C	39.3	292.1	0.92	0.89	1.02	40.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Movem	ent Perf	ormano	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m ¹			sec	m	m/sec
East: George	Ave										
P2 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	204.8	215.2	1.05
North: Joseph	St										
P3 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	213.2	226.1	1.06
All	100	105	39.3	LOS D	0.1	0.1	0.94	0.94	209.0	220.7	1.06

Site: TCS 2789 [Joseph St / Georges Av - Future Base (Site

Folder: PM)]

Joseph St / Georges Av Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site Practical Cycle Time)

Veh	icle M	ovemen	t Perfor	mance										
	Turn	INP		DEM		Deg.		Level of	95% BA		Prop. E		Aver.	Aver.
ID		VOLU	JMES HV 1	FLO' [Total	WS HV]	Satn	Delay	Service	QUE [Veh.	Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	veh/h	veh/h	пv ј %	v/c	sec		veh	m m		Nate	Cycles	km/h
Sout	h: Jose	eph St												
1	L2	61	0	64	0.0	0.623	23.5	LOS B	23.5	169.8	0.73	0.68	0.73	47.6
2	T1	1753	72	1845	4.1	0.623	16.9	LOS B	23.5	170.6	0.71	0.65	0.71	49.7
3	R2	94	2	99	2.1	* 0.374	33.7	LOS C	3.4	24.6	0.94	0.77	0.94	36.6
Appr	roach	1908	74	2008	3.9	0.623	17.9	LOS B	23.5	170.6	0.73	0.66	0.73	48.7
East	: Geor	ge Ave												
4	L2	184	5	194	2.7	0.476	38.6	LOS C	11.0	78.4	0.87	0.79	0.87	33.8
5	T1	259	3	273	1.2	* 0.822	50.5	LOS D	13.7	96.7	0.97	0.94	1.14	27.1
6	R2	20	0	21	0.0	0.822	59.0	LOS E	13.7	96.7	1.00	0.97	1.21	24.7
Appr	roach	463	8	487	1.7	0.822	46.2	LOS D	13.7	96.7	0.93	0.88	1.03	29.6
Nortl	h: Jose	ph St												
7	L2	31	1	33	3.2	* 0.862	42.1	LOS C	39.4	283.7	0.97	0.96	1.07	30.9
8	T1	1998	67	2103	3.4	0.862	35.4	LOS C	39.7	286.0	0.95	0.94	1.05	37.8
9	R2	125	1	132	8.0	* 0.785	65.1	LOS E	7.6	53.5	1.00	0.88	1.23	23.0
Appr	oach	2154	69	2267	3.2	0.862	37.3	LOS C	39.7	286.0	0.95	0.94	1.06	36.6
Wes	t: Geor	ges Av												
10	L2	83	0	87	0.0	0.312	45.6	LOS D	5.6	39.2	0.88	0.77	0.88	28.9
11	T1	169	2	178	1.2	0.715	52.2	LOS D	9.4	66.7	0.98	0.84	1.05	26.6
12	R2	28	1	29	3.6	0.715	58.8	LOS E	9.4	66.7	1.00	0.86	1.10	30.1
Appr	roach	280	3	295	1.1	0.715	50.9	LOS D	9.4	66.7	0.95	0.82	1.01	27.6
All Vehi	cles	4805	154	5058	3.2	0.862	31.2	LOS C	39.7	286.0	0.86	0.81	0.92	39.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Input	Dem.	Aver.	•	۸\/EDAGE	BACK OF	Prop. Et	ffactive	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE		Que	Stop	Time		Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: George	Ave										
P2 Full	50	53	49.3	LOS E	0.2	0.2	0.95	0.95	214.8	215.2	1.00
North: Joseph	St										
P3 Full	50	53	49.3	LOS E	0.2	0.2	0.95	0.95	223.2	226.1	1.01
All	100	105	49.3	LOS E	0.2	0.2	0.95	0.95	219.0	220.7	1.01

Site: TCS 2789 [Joseph St / Georges Av - Construction (Site

Folder: PM)]

Joseph St / Georges Av Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site Practical Cycle Time)

Vehi	cle M	ovemen	t Perfor	mance										
	Turn	INF		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Jose		7011/11	731,711	70	• • • • • • • • • • • • • • • • • • • •			7011					101771
1	L2	61	0	64	0.0	0.623	23.5	LOS B	23.5	169.8	0.73	0.68	0.73	47.6
2	T1	1753	72	1845	4.1	0.623	16.9	LOS B	23.5	170.6	0.71	0.65	0.71	49.7
3	R2	94	2	99	2.1	* 0.374	33.7	LOS C	3.4	24.6	0.94	0.77	0.94	36.6
Appro	oach	1908	74	2008	3.9	0.623	17.9	LOS B	23.5	170.6	0.73	0.66	0.73	48.7
East:	Georg	ge Ave												
4	L2	184	5	194	2.7	0.476	38.6	LOS C	11.0	78.4	0.87	0.79	0.87	33.8
5	T1	259	3	273	1.2	* 0.822	50.5	LOS D	13.7	96.7	0.97	0.94	1.14	27.1
6	R2	20	0	21	0.0	0.822	59.0	LOS E	13.7	96.7	1.00	0.97	1.21	24.7
Appro	oach	463	8	487	1.7	0.822	46.2	LOS D	13.7	96.7	0.93	0.88	1.03	29.6
North	n: Jose	ph St												
7	L2	31	1	33	3.2	* 0.862	42.1	LOS C	39.4	283.7	0.97	0.96	1.07	30.9
8	T1	1998	67	2103	3.4	0.862	35.4	LOS C	39.7	286.0	0.95	0.94	1.05	37.8
9	R2	125	1	132	8.0	* 0.785	65.1	LOS E	7.6	53.5	1.00	0.88	1.23	23.0
Appro	oach	2154	69	2267	3.2	0.862	37.3	LOS C	39.7	286.0	0.95	0.94	1.06	36.6
West	: Geor	ges Av												
10	L2	83	0	87	0.0	0.312	45.6	LOS D	5.6	39.2	0.88	0.77	0.88	28.9
11	T1	169	2	178	1.2	0.715	52.2	LOS D	9.4	66.7	0.98	0.84	1.05	26.6
12	R2	28	1	29	3.6	0.715	58.8	LOS E	9.4	66.7	1.00	0.86	1.10	30.1
Appro	oach	280	3	295	1.1	0.715	50.9	LOS D	9.4	66.7	0.95	0.82	1.01	27.6
All Vehic	cles	4805	154	5058	3.2	0.862	31.2	LOS C	39.7	286.0	0.86	0.81	0.92	39.0

 $Site\ Level\ of\ Service\ (LOS)\ Method:\ Delay\ (RTA\ NSW).\ Site\ LOS\ Method\ is\ specified\ in\ the\ Parameter\ Settings\ dialog\ (Site\ tab).$

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Movem	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	QUE		Prop. Et Que	Stop	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
East: George	Ave										
P2 Full	50	53	49.3	LOS E	0.2	0.2	0.95	0.95	214.8	215.2	1.00
North: Joseph	St										
P3 Full	50	53	49.3	LOS E	0.2	0.2	0.95	0.95	223.2	226.1	1.01
All	100	105	49.3	LOS E	0.2	0.2	0.95	0.95	219.0	220.7	1.01

Site: TCS 2789 [Joseph St / Georges Av - TTP (Site Folder:

PM)]

Joseph St / Georges Av Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site Practical Cycle Time)

Vehi	cle M	ovemen	t Perfor	mance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Jose		7011/11	7311/11	70	• • • • • • • • • • • • • • • • • • • •			7011					101771
1	L2	61	0	64	0.0	0.628	23.6	LOS B	23.7	171.9	0.73	0.68	0.73	47.6
2	T1	1761	80	1854	4.5	0.628	16.9	LOS B	23.7	172.7	0.72	0.65	0.72	49.6
3	R2	94	2	99	2.1	* 0.352	33.3	LOS C	3.4	24.6	0.93	0.76	0.93	36.7
Appro	oach	1916	82	2017	4.3	0.628	18.0	LOS B	23.7	172.7	0.73	0.66	0.73	48.6
East:	Georg	ge Ave												
4	L2	184	5	194	2.7	0.503	40.4	LOS C	11.4	81.5	0.89	0.80	0.89	33.2
5	T1	259	3	273	1.2	* 0.867	54.5	LOS D	14.1	99.7	0.98	0.98	1.22	26.0
6	R2	20	0	21	0.0	0.867	64.0	LOS E	14.1	99.7	1.00	1.03	1.31	23.6
Appro	oach	463	8	487	1.7	0.867	49.3	LOS D	14.1	99.7	0.94	0.91	1.09	28.7
North	n: Jose	ph St												
7	L2	31	1	33	3.2	* 0.875	44.0	LOS D	41.0	296.5	0.98	0.98	1.10	30.2
8	T1	2006	75	2112	3.7	0.875	37.4	LOS C	41.4	298.8	0.95	0.96	1.08	36.9
9	R2	137	13	144	9.5	* 0.855	68.8	LOS E	8.7	65.9	1.00	0.94	1.37	22.2
Appro	oach	2174	89	2288	4.1	0.875	39.4	LOS C	41.4	298.8	0.96	0.96	1.10	35.6
West	: Geor	ges Av												
10	L2	93	10	98	10.8	0.338	45.4	LOS D	5.8	43.3	0.88	0.78	0.88	28.9
11	T1	169	2	178	1.2	0.776	55.0	LOS D	10.1	71.7	0.98	0.88	1.12	25.9
12	R2	28	1	29	3.6	0.776	61.7	LOS E	10.1	71.7	1.00	0.90	1.17	29.2
Appro	oach	290	13	305	4.5	0.776	52.6	LOS D	10.1	71.7	0.95	0.85	1.05	27.0
All Vehic	cles	4843	192	5098	4.0	0.875	32.7	LOS C	41.4	298.8	0.86	0.83	0.95	38.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Novem	ent Perf	ormano	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE	UE	Prop. Ef Que	Stop	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
East: George	Ave										
P2 Full	50	53	49.3	LOS E	0.2	0.2	0.95	0.95	214.8	215.2	1.00
North: Joseph	St										
P3 Full	50	53	49.3	LOS E	0.2	0.2	0.95	0.95	223.2	226.1	1.01
All	100	105	49.3	LOS E	0.2	0.2	0.95	0.95	219.0	220.7	1.01

Site: TCS 2816 [Beamish Street / Amy Street Future Base (Site

Folder: AM)]

Beamish Street / Amy Street Site Category: (None)

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total	IMES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	[Veh.	EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
South	o Poo	veh/h mish St	veh/h	veh/h	%	v/c	sec	_	veh	m	_	_	_	km/h
Souti														
1	L2	72	1	76	1.4	* 0.481	10.1	LOSA	10.9	81.5	0.52	0.50	0.52	35.6
2	T1	481	45	506	9.4	0.481	6.7	LOSA	10.9	81.5	0.52	0.50	0.52	30.0
Appro	oach	553	46	582	8.3	0.481	7.1	LOSA	10.9	81.5	0.52	0.50	0.52	31.3
North	: Bear	mish St												
8	T1	511	45	538	8.8	0.404	3.8	LOSA	7.5	56.4	0.39	0.35	0.39	33.9
9	R2	3	0	3	0.0	0.404	7.4	LOSA	7.5	56.4	0.39	0.35	0.39	37.2
Appro	oach	514	45	541	8.8	0.404	3.8	LOSA	7.5	56.4	0.39	0.35	0.39	33.9
West	: Amy	St												
10	L2	34	0	36	0.0	* 0.308	45.3	LOS D	1.4	10.1	0.99	0.72	0.99	22.5
Appro	oach	34	0	36	0.0	0.308	45.3	LOS D	1.4	10.1	0.99	0.72	0.99	22.5
All Vehic	les	1101	91	1159	8.3	0.481	6.8	LOSA	10.9	81.5	0.47	0.43	0.47	31.4

 $Site\ Level\ of\ Service\ (LOS)\ Method:\ Delay\ (RTA\ NSW).\ Site\ LOS\ Method\ is\ specified\ in\ the\ Parameter\ Settings\ dialog\ (Site\ tab).$

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	formand	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m m		rtato	sec	m	m/sec
South: Beamis	sh St										
P1 Full	180	189	34.5	LOS D	0.4	0.4	0.93	0.93	55.7	27.5	0.49
North: Beamis	sh St										
P3 Full	120	126	34.4	LOS D	0.3	0.3	0.93	0.93	55.6	27.5	0.49
West: Amy St											
P4 Full	354	373	3.1	LOS A	0.2	0.2	0.28	0.28	25.8	29.5	1.14
All Pedestrians	654	688	17.5	LOS B	0.4	0.4	0.58	0.58	39.5	28.6	0.72

Site: TCS 2816 [Beamish Street / Amy Street Construction

(Site Folder: AM)]

Beamish Street / Amy Street Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM. FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Bea	mish St	VEII/II	VEII/II	70	V/C	366		Veri	- '''				KIII/II
1 2	L2 T1	72 481	1 45	76 506	1.4 9.4	* 0.481 0.481	10.1 6.7	LOS A LOS A	10.9 10.9	81.5 81.5	0.52 0.52	0.50 0.50	0.52 0.52	35.6 30.0
Appro	oach	553	46	582	8.3	0.481	7.1	LOSA	10.9	81.5	0.52	0.50	0.52	31.3
North	: Bear	nish St												
8	T1	511	45	538	8.8	0.404	3.8	LOSA	7.5	56.4	0.39	0.35	0.39	33.9
9	R2	3	0	3	0.0	0.404	7.4	LOSA	7.5	56.4	0.39	0.35	0.39	37.2
Appro	oach	514	45	541	8.8	0.404	3.8	LOSA	7.5	56.4	0.39	0.35	0.39	33.9
West	: Amy	St												
10	L2	34	0	36	0.0	* 0.308	45.3	LOS D	1.4	10.1	0.99	0.72	0.99	22.5
Appro	oach	34	0	36	0.0	0.308	45.3	LOS D	1.4	10.1	0.99	0.72	0.99	22.5
All Vehic	les	1101	91	1159	8.3	0.481	6.8	LOSA	10.9	81.5	0.47	0.43	0.47	31.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	formand	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m m		rtato	sec	m	m/sec
South: Beamis	sh St										
P1 Full	180	189	34.5	LOS D	0.4	0.4	0.93	0.93	55.7	27.5	0.49
North: Beamis	sh St										
P3 Full	120	126	34.4	LOS D	0.3	0.3	0.93	0.93	55.6	27.5	0.49
West: Amy St											
P4 Full	354	373	3.1	LOS A	0.2	0.2	0.28	0.28	25.8	29.5	1.14
All Pedestrians	654	688	17.5	LOS B	0.4	0.4	0.58	0.58	39.5	28.6	0.72

Site: TCS 2816 [Beamish Street / Amy Street TTP (Site Folder:

AM)]

Beamish Street / Amy Street Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Bea	mish St				.,,								1111111
1 2	L2 T1	72 494	1 58	76 520	1.4 11.7	* 0.501 0.501	10.2 6.8	LOS A LOS A	11.3 11.3	86.5 86.5	0.53 0.53	0.50 0.50	0.53 0.53	35.5 29.8
Appro	oach	566	59	596	10.4	0.501	7.3	LOSA	11.3	86.5	0.53	0.50	0.53	31.2
North	: Bear	mish St												
8	T1	549	83	578	15.1	0.459	4.1	LOSA	8.6	67.7	0.41	0.37	0.41	33.6
9	R2	3	0	3	0.0	0.459	7.6	LOSA	8.6	67.7	0.41	0.37	0.41	37.1
Appro	oach	552	83	581	15.0	0.459	4.1	LOSA	8.6	67.7	0.41	0.37	0.41	33.6
West	: Amy	St												
10	L2	34	0	36	0.0	* 0.308	45.3	LOS D	1.4	10.1	0.99	0.72	0.99	22.5
Appro	oach	34	0	36	0.0	0.308	45.3	LOS D	1.4	10.1	0.99	0.72	0.99	22.5
All Vehic	les	1152	142	1213	12.3	0.501	6.9	LOSA	11.3	86.5	0.49	0.45	0.49	31.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Mov _	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec
South: Beamis	sh St										
P1 Full	180	189	34.5	LOS D	0.4	0.4	0.93	0.93	55.7	27.5	0.49
North: Beamis	h St										
P3 Full	120	126	34.4	LOS D	0.3	0.3	0.93	0.93	55.6	27.5	0.49
West: Amy St											
P4 Full	354	373	3.1	LOS A	0.2	0.2	0.28	0.28	25.8	29.5	1.14
All Pedestrians	654	688	17.5	LOS B	0.4	0.4	0.58	0.58	39.5	28.6	0.72

Site: TCS 2816 [Beamish Street / Amy Street Future Base (Site

Folder: PM)]

Beamish Street / Amy Street Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total	IMES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
South	n Bea	veh/h mish St	veh/h	veh/h	%	v/c	sec		veh	m				km/h
1 2	L2 T1	105 505	32 1	111 532	30.5 0.2	* 0.631 0.631	16.9 13.3	LOS B	17.3 17.3	126.4 126.4	0.74 0.74	0.69	0.74 0.74	32.0 24.3
Appro	oach	610	33	642	5.4	0.631	14.0	LOSA	17.3	126.4	0.74	0.69	0.74	26.6
North	: Bear	mish St												
8	T1	554	33	583	6.0	0.504	8.3	LOSA	12.2	89.8	0.58	0.52	0.58	28.8
9	R2	6	0	6	0.0	0.504	11.8	LOS A	12.2	89.8	0.58	0.52	0.58	34.7
Appro	oach	560	33	589	5.9	0.504	8.3	LOSA	12.2	89.8	0.58	0.52	0.58	28.9
West	: Amy	St												
10	L2	142	0	149	0.0	* 0.585	40.1	LOS C	5.8	40.4	0.99	0.80	1.00	23.7
Appro	oach	142	0	149	0.0	0.585	40.1	LOS C	5.8	40.4	0.99	0.80	1.00	23.7
All Vehic	les	1312	66	1381	5.0	0.631	14.4	LOSA	17.3	126.4	0.70	0.63	0.70	26.6

 $Site\ Level\ of\ Service\ (LOS)\ Method:\ Delay\ (RTA\ NSW).\ Site\ LOS\ Method\ is\ specified\ in\ the\ Parameter\ Settings\ dialog\ (Site\ tab).$

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
South: Beamis	sh St										
P1 Full	180	189	27.4	LOS C	0.4	0.4	0.83	0.83	48.6	27.5	0.57
North: Beamis	h St										
P3 Full	120	126	27.4	LOS C	0.2	0.2	0.83	0.83	48.5	27.5	0.57
West: Amy St											
P4 Full	354	373	5.7	LOS A	0.3	0.3	0.38	0.38	28.4	29.5	1.04
All Pedestrians	654	688	15.7	LOS B	0.4	0.4	0.59	0.59	37.7	28.6	0.76

Site: TCS 2816 [Beamish Street / Amy Street Construction

(Site Folder: PM)]

Beamish Street / Amy Street Site Category: (None)

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total	IMES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
South	n Bea	veh/h mish St	veh/h	veh/h	%	v/c	sec		veh	m				km/h
1 2	L2 T1	105 505	32 1	111 532	30.5 0.2	* 0.631 0.631	16.9 13.3	LOS B	17.3 17.3	126.4 126.4	0.74 0.74	0.69	0.74 0.74	32.0 24.3
Appro	oach	610	33	642	5.4	0.631	14.0	LOSA	17.3	126.4	0.74	0.69	0.74	26.6
North	: Bear	mish St												
8	T1	554	33	583	6.0	0.504	8.3	LOSA	12.2	89.8	0.58	0.52	0.58	28.8
9	R2	6	0	6	0.0	0.504	11.8	LOS A	12.2	89.8	0.58	0.52	0.58	34.7
Appro	oach	560	33	589	5.9	0.504	8.3	LOSA	12.2	89.8	0.58	0.52	0.58	28.9
West	: Amy	St												
10	L2	142	0	149	0.0	* 0.585	40.1	LOS C	5.8	40.4	0.99	0.80	1.00	23.7
Appro	oach	142	0	149	0.0	0.585	40.1	LOS C	5.8	40.4	0.99	0.80	1.00	23.7
All Vehic	les	1312	66	1381	5.0	0.631	14.4	LOSA	17.3	126.4	0.70	0.63	0.70	26.6

 $Site\ Level\ of\ Service\ (LOS)\ Method:\ Delay\ (RTA\ NSW).\ Site\ LOS\ Method\ is\ specified\ in\ the\ Parameter\ Settings\ dialog\ (Site\ tab).$

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Mov	Input	Dem.	Aver.	Level of .	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	UE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec
South: Beamis	sh St										
P1 Full	180	189	27.4	LOS C	0.4	0.4	0.83	0.83	48.6	27.5	0.57
North: Beamis	h St										
P3 Full	120	126	27.4	LOS C	0.2	0.2	0.83	0.83	48.5	27.5	0.57
West: Amy St											
P4 Full	354	373	5.7	LOS A	0.3	0.3	0.38	0.38	28.4	29.5	1.04
All Pedestrians	654	688	15.7	LOS B	0.4	0.4	0.59	0.59	37.7	28.6	0.76

Site: TCS 2816 [Beamish Street / Amy Street TTP (Site Folder:

PM)]

Beamish Street / Amy Street Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total		DEM FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m ¯				km/h
South	n: Bea	mish St												
1	L2	105	32	111	30.5	* 0.698	16.0	LOS B	19.1	149.4	0.75	0.70	0.75	32.5
2	T1	561	57	591	10.2	0.698	12.4	LOSA	19.1	149.4	0.75	0.70	0.75	25.0
Appro	oach	666	89	701	13.4	0.698	13.0	LOSA	19.1	149.4	0.75	0.70	0.75	27.0
North	ı: Bear	mish St												
8	T1	566	45	596	8.0	0.507	7.3	LOSA	11.9	88.7	0.55	0.50	0.55	29.7
9	R2	6	0	6	0.0	0.507	10.9	LOSA	11.9	88.7	0.55	0.50	0.55	35.2
Appro	oach	572	45	602	7.9	0.507	7.4	LOSA	11.9	88.7	0.55	0.50	0.55	29.8
West	: Amy	St												
10	L2	142	0	149	0.0	* 0.715	44.1	LOS D	6.2	43.1	1.00	0.89	1.16	22.8
Appro	oach	142	0	149	0.0	0.715	44.1	LOS D	6.2	43.1	1.00	0.89	1.16	22.8
All Vehic	eles	1380	134	1453	9.7	0.715	13.9	LOSA	19.1	149.4	0.69	0.64	0.71	26.8

 $Site\ Level\ of\ Service\ (LOS)\ Method:\ Delay\ (RTA\ NSW).\ Site\ LOS\ Method\ is\ specified\ in\ the\ Parameter\ Settings\ dialog\ (Site\ tab).$

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m m		Itale	sec	m	m/sec
South: Beamis	sh St										
P1 Full	180	189	29.1	LOS C	0.4	0.4	0.86	0.86	50.3	27.5	0.55
North: Beamis	sh St										
P3 Full	120	126	29.1	LOS C	0.2	0.2	0.85	0.85	50.2	27.5	0.55
West: Amy St											
P4 Full	354	373	5.0	LOS A	0.3	0.3	0.36	0.36	27.7	29.5	1.07
All Pedestrians	654	688	16.0	LOS B	0.4	0.4	0.59	0.59	38.0	28.6	0.75

Site: TCS 3340 [New Canterbury Rd / Frazer St - Future Base

(Site Folder: AM)]

New Canterbury Rd / Frazer St

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle Mo	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU	JMES	DEM. FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. E Que	ffective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: New	Canterb	ury Rd											
2	T1	846	44	891	5.2	0.520	6.3	LOSA	14.3	102.3	0.47	0.45	0.47	50.9
3	R2	306	6	322	2.0	* 0.520	20.1	LOS B	14.3	102.3	0.73	0.79	0.73	38.8
Appro	oach	1152	50	1213	4.3	0.520	9.9	LOSA	14.3	102.3	0.54	0.54	0.54	47.1
East:	Fraze	r St												
4	L2	82	8	86	9.8	0.098	18.5	LOS B	2.1	15.9	0.53	0.70	0.53	37.9
6	R2	68	11	72	1.5	* 0.355	51.8	LOS D	3.4	23.9	0.97	0.76	0.97	27.8
Appro	oach	150	9	158	6.0	0.355	33.6	LOS C	3.4	23.9	0.73	0.73	0.73	32.0
North	: New	Canterb	ury Rd											
7	L2	129	2	136	1.6	0.140	18.2	LOS B	3.3	23.5	0.54	0.71	0.54	42.0
8	T1	364	24	383	6.6	* 0.709	28.6	LOS C	15.3	113.5	0.86	0.76	0.88	34.5
Appro	oach	493	26	519	5.3	0.709	25.9	LOS B	15.3	113.5	0.78	0.75	0.79	36.5
All Vehic	eles	1795	85	1889	4.7	0.709	16.3	LOS B	15.3	113.5	0.62	0.61	0.62	41.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pe	destrian l	Movem	ent Perf	ormano	ce							
Mo ^s ID	v Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
		ped/h	ped/h	sec		ped	m			sec	m	m/sec
Sou	uth: New C	anterbur	y Rd									
P1	Full	50	53	44.3	LOS E	0.1	0.1	0.94	0.94	209.8	215.2	1.03
Eas	st: Frazer S	St										
P2	Full	50	53	44.3	LOS E	0.1	0.1	0.94	0.94	207.3	211.9	1.02
All Ped	destrians	100	105	44.3	LOS E	0.1	0.1	0.94	0.94	208.5	213.6	1.02

Site: TCS 3340 [New Canterbury Rd / Frazer St - Construction

(Site Folder: AM)]

New Canterbury Rd / Frazer St

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle Mo	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU	JMES	DEM. FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. E Que	ffective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: New	Canterb	ury Rd											
2	T1	846	44	891	5.2	0.520	6.3	LOSA	14.3	102.3	0.47	0.45	0.47	50.9
3	R2	306	6	322	2.0	* 0.520	20.1	LOS B	14.3	102.3	0.73	0.79	0.73	38.8
Appro	oach	1152	50	1213	4.3	0.520	9.9	LOSA	14.3	102.3	0.54	0.54	0.54	47.1
East:	Fraze	r St												
4	L2	82	8	86	9.8	0.098	18.5	LOS B	2.1	15.9	0.53	0.70	0.53	37.9
6	R2	68	11	72	1.5	* 0.355	51.8	LOS D	3.4	23.9	0.97	0.76	0.97	27.8
Appro	oach	150	9	158	6.0	0.355	33.6	LOS C	3.4	23.9	0.73	0.73	0.73	32.0
North	: New	Canterb	ury Rd											
7	L2	129	2	136	1.6	0.140	18.2	LOS B	3.3	23.5	0.54	0.71	0.54	42.0
8	T1	364	24	383	6.6	* 0.709	28.6	LOS C	15.3	113.5	0.86	0.76	0.88	34.5
Appro	oach	493	26	519	5.3	0.709	25.9	LOS B	15.3	113.5	0.78	0.75	0.79	36.5
All Vehic	eles	1795	85	1889	4.7	0.709	16.3	LOS B	15.3	113.5	0.62	0.61	0.62	41.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movemo Input	ent Peri Dem.	Aver.	· ·	AVERAGE	BACK OE	Prop. E	ffootivo	Travel	Troval	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE QUE		Que	Stop	Time	Travel Dist.	Speed
	ped/h	ped/h	sec		ped	m ¹			sec	m	m/sec
South: New C	anterbur	y Rd									
P1 Full	50	53	44.3	LOS E	0.1	0.1	0.94	0.94	209.8	215.2	1.03
East: Frazer S	St										
P2 Full	50	53	44.3	LOS E	0.1	0.1	0.94	0.94	207.3	211.9	1.02
All Pedestrians	100	105	44.3	LOS E	0.1	0.1	0.94	0.94	208.5	213.6	1.02

Site: TCS 3340 [New Canterbury Rd / Frazer St - TTP (Site

Folder: AM)]

New Canterbury Rd / Frazer St

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 100 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle Mo	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU	JMES	DEM. FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. E Que	ffective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: New	Canterb	ury Rd											
2	T1	846	44	891	5.2	0.575	5.9	LOSA	16.3	119.3	0.47	0.45	0.47	51.6
3	R2	363	63	382	17.4	* 0.575	22.5	LOS B	13.5	107.1	0.76	0.87	0.76	36.8
Appro	oach	1209	107	1273	8.9	0.575	10.9	LOSA	16.3	119.3	0.56	0.57	0.56	46.2
East:	Fraze	r St												
4	L2	82	8	86	9.8	0.094	17.5	LOS B	2.0	15.2	0.51	0.69	0.51	38.6
6	R2	68	11	72	1.5	* 0.355	51.8	LOS D	3.4	23.9	0.97	0.76	0.97	27.8
Appro	oach	150	9	158	6.0	0.355	33.0	LOS C	3.4	23.9	0.72	0.72	0.72	32.2
North	: New	Canterb	ury Rd											
7	L2	129	2	136	1.6	0.146	19.3	LOS B	3.5	24.5	0.56	0.71	0.56	41.3
8	T1	364	24	383	6.6	* 0.753	32.1	LOS C	16.4	121.3	0.89	0.81	0.95	32.8
Appro	oach	493	26	519	5.3	0.753	28.8	LOS C	16.4	121.3	0.80	0.79	0.85	35.0
All Vehic	eles	1852	142	1949	7.7	0.753	17.4	LOS B	16.4	121.3	0.64	0.64	0.65	41.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movemo Input	ent Peri Dem.	Aver.	· ·	AVERAGE	BACK OE	Prop. E	ffootivo	Travel	Troval	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE QUE		Que	Stop	Time	Travel Dist.	Speed
	ped/h	ped/h	sec		ped	m ¹			sec	m	m/sec
South: New C	anterbur	y Rd									
P1 Full	50	53	44.3	LOS E	0.1	0.1	0.94	0.94	209.8	215.2	1.03
East: Frazer S	St										
P2 Full	50	53	44.3	LOS E	0.1	0.1	0.94	0.94	207.3	211.9	1.02
All Pedestrians	100	105	44.3	LOS E	0.1	0.1	0.94	0.94	208.5	213.6	1.02

Site: TCS 4074 [Restwell Street / Raymond Street - Future

Base (Site Folder: AM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: Res	twell Stre	et											
1 2	L2 T1	194 333	0 32	204 351	0.0 9.6	0.458 * 0.900	21.7 32.5	LOS B LOS C	4.5 11.2	31.2 85.1	0.90 1.00	0.78 1.27	0.90 1.64	21.9 14.8
Appr	oach	527	32	555	6.1	0.900	28.5	LOS C	11.2	85.1	0.96	1.09	1.36	17.3
East:	Raym	ond St												
4	L2	103	2	108	1.9	0.119	10.6	LOSA	1.4	10.1	0.56	0.65	0.56	30.8
5	T1	210	0	221	0.0	* 0.810	27.6	LOS B	6.2	43.1	1.00	1.03	1.39	23.8
6	R2	63	4	66	6.3	0.271	26.2	LOS B	1.6	11.5	0.93	0.74	0.93	22.3
Appr	oach	376	6	396	1.6	0.810	22.7	LOS B	6.2	43.1	0.87	0.88	1.08	25.0
North	n: Rest	well Stree	et											
8	T1	39	39	41	100.0	0.191	18.6	LOS B	0.9	11.5	0.85	0.65	0.85	20.3
Appr	oach	39	39	41	100.0	0.191	18.6	LOS B	0.9	11.5	0.85	0.65	0.85	20.3
West	: Gree	nfield Pa	rade											
10	L2	373	0	393	0.0	* 0.881	32.4	LOS C	12.0	84.2	1.00	1.20	1.51	19.0
Appr	oach	373	0	393	0.0	0.881	32.4	LOS C	12.0	84.2	1.00	1.20	1.51	19.0
All Vehic	cles	1315	77	1384	5.9	0.900	27.7	LOS B	12.0	85.1	0.94	1.05	1.31	20.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov		Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID (Crossing	Vol.	Flow	Delay	Service	QUE [Ped	UE Dist]	Que	Stop Rate	Time	Dist. S	Speed
		ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec
Sout	h: Restwe	II Street										
P1 F	Full	46	48	17.7	LOS B	0.1	0.1	0.84	0.84	42.3	32.0	0.76
East:	Raymon	d St										
P2	Full	80	84	17.7	LOS B	0.1	0.1	0.84	0.84	41.5	31.0	0.75
North	n: Restwe	II Street										
P3 F	Full	1	1	16.0	LOS B	0.0	0.0	0.80	0.80	37.2	27.5	0.74
West	: Greenfie	eld Para	de									
P4 F	Full	50	53	16.8	LOS B	0.1	0.1	0.82	0.82	37.6	27.0	0.72
P4S	Slip/	50	53	7.3	LOS A	0.0	0.0	0.54	0.54	26.0	24.3	0.93

Site: TCS 4074 [Restwell Street / Raymond Street -

Construction (Site Folder: AM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Rest	twell Stre	et											
2	L2 T1	194 333 527	0 32 32	204 351 555	0.0 9.6 6.1	0.458 * 0.900 0.900	21.7 32.5 28.5	LOS B LOS C	4.5 11.2 11.2	31.2 85.1 85.1	0.90 1.00 0.96	0.78 1.27 1.09	0.90 1.64 1.36	21.9 14.8 17.3
Appr East:		ond St	32	555	0.1	0.900	20.5	103 0	11.2	00.1	0.90	1.09	1.30	17.3
4	L2	103	2	108	1.9	0.119	10.6	LOSA	1.4	10.1	0.56	0.65	0.56	30.8
5 6	T1 R2	210 71	0 12	221 75	0.0 16.9	* 0.810 0.335	27.6 26.7	LOS B	6.2 1.8	43.1 14.3	1.00 0.94	1.03 0.75	1.39 0.94	23.8 22.1
Appr		384	14	404	3.6	0.810	22.9	LOS B	6.2	43.1	0.87	0.73	1.08	24.9
North	n: Rest	well Stree	et											
8	T1	39	39	41	100.0	0.191	18.6	LOS B	0.9	11.5	0.85	0.65	0.85	20.3
Appr	oach	39	39	41	100.0	0.191	18.6	LOS B	0.9	11.5	0.85	0.65	0.85	20.3
West	: Gree	nfield Pai	rade											
10	L2	373	0	393	0.0	* 0.881	32.4	LOS C	12.0	84.2	1.00	1.20	1.51	19.0
Appr	oach	373	0	393	0.0	0.881	32.4	LOS C	12.0	84.2	1.00	1.20	1.51	19.0
All Vehic	cles	1323	85	1393	6.4	0.900	27.7	LOS B	12.0	85.1	0.94	1.05	1.31	20.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov	destrian N	Input	Dem.	Aver.	· ·	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID	Crossing	Vol.	Flow	Delay	Service	QUE [Ped		Que	Stop Rate	Time	Dist. S	
		ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec
Sou	ıth: Restwe	II Street										
P1	Full	46	48	17.7	LOS B	0.1	0.1	0.84	0.84	42.3	32.0	0.76
Eas	t: Raymon	d St										
P2	Full	80	84	17.7	LOS B	0.1	0.1	0.84	0.84	41.5	31.0	0.75
Nor	th: Restwe	II Street										
РЗ	Full	1	1	16.0	LOS B	0.0	0.0	0.80	0.80	37.2	27.5	0.74
Wes	st: Greenfie	eld Para	de									
P4	Full	50	53	16.8	LOS B	0.1	0.1	0.82	0.82	37.6	27.0	0.72
P4S	Slip/	50	53	7.3	LOS A	0.0	0.0	0.54	0.54	26.0	24.3	0.93

Site: TCS 4074 [Restwell Street / Raymond Street - TTP (Site

Folder: AM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Rest	twell Stre	et											
1 2	L2 T1	194 333 527	0 32 32	204 351 555	0.0 9.6 6.1	0.458 * 0.900 0.900	21.7 32.5 28.5	LOS B LOS C	4.5 11.2 11.2	31.2 85.1 85.1	0.90 1.00 0.96	0.78 1.27 1.09	0.90 1.64 1.36	21.9 14.8 17.3
Appr East:		ond St	32	555	0.1	0.900	20.5	103 0	11.2	00.1	0.90	1.09	1.30	17.3
4	L2	103	2	108	1.9	0.119	10.6	LOSA	1.4	10.1	0.56	0.65	0.56	30.8
5 6	T1 R2	210 84	0 25	221 88	0.0 29.8	* 0.810 0.444	27.6 27.4	LOS B	6.2 2.2	43.1 19.1	1.00 0.96	1.03 0.77	1.39 0.96	23.8 21.8
Appr		397	27	418	6.8	0.444	23.2	LOS B	6.2	43.1	0.88	0.77	1.08	24.7
North	n: Rest	well Stree	et											
8	T1	39	39	41	100.0	0.191	18.6	LOS B	0.9	11.5	0.85	0.65	0.85	20.3
Appr	oach	39	39	41	100.0	0.191	18.6	LOS B	0.9	11.5	0.85	0.65	0.85	20.3
West	: Gree	nfield Pai	rade											
10	L2	373	0	393	0.0	* 0.881	32.4	LOS C	12.0	84.2	1.00	1.20	1.51	19.0
Appr	oach	373	0	393	0.0	0.881	32.4	LOS C	12.0	84.2	1.00	1.20	1.51	19.0
All Vehic	cles	1336	98	1406	7.3	0.900	27.7	LOS B	12.0	85.1	0.94	1.04	1.31	20.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov .	Input	Dem.	Aver.	Level of	AVERAGE		Prop. E	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m m		rtate	sec	m	m/sec
South: Restwe	ell Street										
P1 Full	46	48	17.7	LOS B	0.1	0.1	0.84	0.84	42.3	32.0	0.76
East: Raymon	d St										
P2 Full	80	84	17.7	LOS B	0.1	0.1	0.84	0.84	41.5	31.0	0.75
North: Restwe	II Street										
P3 Full	1	1	16.0	LOS B	0.0	0.0	0.80	0.80	37.2	27.5	0.74
West: Greenfi	eld Para	de									
P4 Full	50	53	16.8	LOS B	0.1	0.1	0.82	0.82	37.6	27.0	0.72
P4SSlip/	50	53	7.3	LOS A	0.0	0.0	0.54	0.54	26.0	24.3	0.93

Site: TCS 4074 [Restwell Street / Raymond Street - Future

Base (Site Folder: PM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: Res	twell Stre	et											
1 2	L2 T1	186 252	0 26	196 265	0.0 10.3	0.335 * 0.953	23.5 54.7	LOS B LOS D	5.2 12.7	36.5 97.0	0.81 1.00	0.76 1.38	0.81 1.82	21.1 10.4
Appro		438 nond St	26	461	5.9	0.953	41.4	LOS C	12.7	97.0	0.92	1.12	1.39	13.9
4	L2	261	2	275	0.8	0.237	9.5	LOSA	4.1	28.7	0.46	0.64	0.46	31.6
5	T1	408	0	429	0.0	* 0.964	56.0	LOS D	21.7	151.6	1.00	1.44	1.74	16.8
6	R2	116	7	122	6.0	0.305	28.8	LOS C	3.6	26.2	0.87	0.77	0.87	21.3
Appr	oach	785	9	826	1.1	0.964	36.5	LOS C	21.7	151.6	0.80	1.07	1.19	20.3
North	n: Rest	well Stree	et											
8	T1	36	36	38	100.0	0.227	29.0	LOS C	1.2	15.6	0.90	0.68	0.90	15.9
Appr	oach	36	36	38	100.0	0.227	29.0	LOS C	1.2	15.6	0.90	0.68	0.90	15.9
West	: Gree	nfield Pa	rade											
10	L2	535	0	563	0.0	* 0.965	58.5	LOS E	29.4	205.5	1.00	1.36	1.68	13.1
Appr	oach	535	0	563	0.0	0.965	58.5	LOS E	29.4	205.5	1.00	1.36	1.68	13.1
All Vehic	cles	1794	71	1888	4.0	0.965	44.1	LOS D	29.4	205.5	0.89	1.16	1.38	16.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE		Que	Stop	Time	Dist. S	Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
South: Restwe	ell Street										
P1 Full	46	48	23.3	LOS C	0.1	0.1	0.82	0.82	47.9	32.0	0.67
East: Raymon	d St										
P2 Full	80	84	26.7	LOS C	0.1	0.1	0.87	0.87	50.5	31.0	0.61
North: Restwe	II Street										
P3 Full	1	1	17.9	LOS B	0.0	0.0	0.71	0.71	39.0	27.5	0.70
West: Greenfie	eld Para	de									
P4 Full	50	53	25.8	LOS C	0.1	0.1	0.86	0.86	46.5	27.0	0.58
P4S Slip/	50	53	9.8	LOS A	0.1	0.1	0.53	0.53	28.5	24.3	0.85

Site: TCS 4074 [Restwell Street / Raymond Street -

Construction (Site Folder: PM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	icle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: Rest	twell Stre	et											
1 2	L2 T1	186 252	0 26	196 265	0.0	0.335 * 0.953	23.5 54.7	LOS B	5.2 12.7	36.5 97.0	0.81 1.00	0.76 1.38	0.81 1.82	21.1
Appr East:		438 ond St	26	461	5.9	0.953	41.4	LOS C	12.7	97.0	0.92	1.12	1.39	13.9
4	L2	261	2	275	8.0	0.237	9.5	LOSA	4.1	28.7	0.46	0.64	0.46	31.6
5	T1	408	0	429	0.0	* 0.964	56.0	LOS D	21.7	151.6	1.00	1.44	1.74	16.8
6	R2	124	15	131	12.1	0.344	29.2	LOS C	3.9	29.8	0.88	0.77	0.88	21.2
Appr	oach	793	17	835	2.1	0.964	36.5	LOS C	21.7	151.6	0.81	1.07	1.18	20.3
North	n: Rest	well Stree	et											
8	T1	36	36	38	100.0	0.227	29.0	LOS C	1.2	15.6	0.90	0.68	0.90	15.9
Appr	oach	36	36	38	100.0	0.227	29.0	LOS C	1.2	15.6	0.90	0.68	0.90	15.9
West	t: Gree	nfield Pa	rade											
10	L2	535	0	563	0.0	* 0.965	58.5	LOS E	29.4	205.5	1.00	1.36	1.68	13.1
Appr	oach	535	0	563	0.0	0.965	58.5	LOS E	29.4	205.5	1.00	1.36	1.68	13.1
All Vehic	cles	1802	79	1897	4.4	0.965	44.1	LOS D	29.4	205.5	0.89	1.16	1.37	16.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE		Que	Stop	Time	Dist. S	Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
South: Restwe	ell Street										
P1 Full	46	48	23.3	LOS C	0.1	0.1	0.82	0.82	47.9	32.0	0.67
East: Raymon	d St										
P2 Full	80	84	26.7	LOS C	0.1	0.1	0.87	0.87	50.5	31.0	0.61
North: Restwe	II Street										
P3 Full	1	1	17.9	LOS B	0.0	0.0	0.71	0.71	39.0	27.5	0.70
West: Greenfie	eld Para	de									
P4 Full	50	53	25.8	LOS C	0.1	0.1	0.86	0.86	46.5	27.0	0.58
P4S Slip/	50	53	9.8	LOS A	0.1	0.1	0.53	0.53	28.5	24.3	0.85

Site: TCS 4074 [Restwell Street / Raymond Street - TTP (Site

Folder: PM)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	icle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Res	twell Stre	et											
1 2	L2 T1	186 252	0 26	196 265	0.0 10.3	0.335 * 0.953	23.5 54.7	LOS B LOS D	5.2 12.7	36.5 97.0	0.81 1.00	0.76 1.38	0.81 1.82	21.1 10.4
Appr	oach	438	26	461	5.9	0.953	41.4	LOS C	12.7	97.0	0.92	1.12	1.39	13.9
East	: Raym	ond St												
4	L2	261	2	275	8.0	0.237	9.5	LOSA	4.1	28.7	0.46	0.64	0.46	31.6
5	T1	408	0	429	0.0	* 0.964	56.0	LOS D	21.7	151.6	1.00	1.44	1.74	16.8
6	R2	186	77	196	41.4	0.663	33.2	LOS C	6.6	62.7	0.96	0.86	1.05	19.9
Appr	oach	855	79	900	9.2	0.964	36.9	LOS C	21.7	151.6	0.83	1.07	1.20	20.1
North	n: Rest	well Stree	et											
8	T1	36	36	38	100.0	0.227	29.0	LOS C	1.2	15.6	0.90	0.68	0.90	15.9
Appr	oach	36	36	38	100.0	0.227	29.0	LOS C	1.2	15.6	0.90	0.68	0.90	15.9
West	t: Gree	nfield Pai	rade											
10	L2	535	0	563	0.0	* 0.965	58.5	LOS E	29.4	205.5	1.00	1.36	1.68	13.1
Appr	oach	535	0	563	0.0	0.965	58.5	LOS E	29.4	205.5	1.00	1.36	1.68	13.1
All Vehic	cles	1864	141	1962	7.6	0.965	44.0	LOS D	29.4	205.5	0.90	1.16	1.38	16.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov		Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. E	ffective	Travel	Travel	Aver.
ID '	Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. S	Speed
		ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec
Sout	h: Restwe	ell Street										
P1	Full	46	48	23.3	LOS C	0.1	0.1	0.82	0.82	47.9	32.0	0.67
East	: Raymon	d St										
P2	Full	80	84	26.7	LOS C	0.1	0.1	0.87	0.87	50.5	31.0	0.61
Nortl	h: Restwe	II Street										
РЗ	Full	1	1	17.9	LOS B	0.0	0.0	0.71	0.71	39.0	27.5	0.70
Wes	t: Greenfie	eld Para	de									
P4	Full	50	53	25.8	LOS C	0.1	0.1	0.86	0.86	46.5	27.0	0.58
P4S	Slip/	50	53	9.8	LOS A	0.1	0.1	0.53	0.53	28.5	24.3	0.85

Site: TCS 4408 [French Ave / Chapel Rd - Future Base (Site

Folder: AM)]

French Ave / Chapel Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 30 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: Cha _l	pel Rd												
1 2	L2 T1	16 258	0 23	17 272	0.0 8.9	0.088 * 0.439	11.8 7.3	LOS A LOS A	0.6 3.0	4.4 22.7	0.65 0.74	0.55 0.64	0.65 0.74	39.6 40.0
3	R2	42	11	44	2.4	0.439	13.0	LOS A	3.0	22.7	0.76	0.66	0.76	37.8
Appr	oach	316	24	333	7.6	0.439	8.3	LOSA	3.0	22.7	0.74	0.64	0.74	39.6
East:	Frenc	h Ave												
4 5	L2 T1	39 57	2 2	41 60	5.1 3.5	0.139 * 0.305	17.1 12.1	LOS B LOS A	0.6 1.4	4.1 9.7	0.88 0.89	0.71 0.71	0.88 0.89	28.5 34.6
6	R2	37	0	39	0.0	0.305	16.7	LOS B	1.4	9.7	0.89	0.71	0.89	32.0
Appr	oach	133	4	140	3.0	0.305	14.9	LOS B	1.4	9.7	0.89	0.71	0.89	32.2
North	n: Chap	oel Rd												
7 8	L2 T1	15 315	0 33	16 332	0.0 10.5	0.308	12.5 7.0	LOS A	2.3	17.5 17.5	0.72 0.72	0.61 0.62	0.72 0.72	40.0 40.5
9 Appro	R2 oach	51 381	34	54 401	2.0 8.9	0.308	12.6 8.0	LOS A	2.3	14.5 17.5	0.72 0.72	0.64	0.72	39.1 40.3
West	:: Frenc	ch Ave												
10	L2	30	1	32	3.3	0.105	17.0	LOS B	0.4	3.1	0.88	0.70	0.88	30.9
11	T1	68	1	72	1.5	0.236	11.8	LOS A	1.1	7.9	0.88	0.68	0.88	35.8
12	R2	11	0	12	0.0	0.236	16.4	LOS B	1.1	7.9	0.88	0.68	0.88	33.7
Appr	oach	109	2	115	1.8	0.236	13.7	LOSA	1.1	7.9	0.88	0.68	0.88	34.2
All Vehic	cles	939	64	988	6.8	0.439	9.7	LOSA	3.0	22.7	0.77	0.65	0.77	37.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian	Movem	ent Perf	ormano	ce							
Mov	Input	Dem.	Aver.	Level of a	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE		Que	Stop	Time	Dist.	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Chape	l Rd										
P1 Full	50	53	9.6	LOS A	0.0	0.0	0.80	0.80	175.2	215.2	1.23
East: French	Ave										
P2 Full	50	53	9.6	LOS A	0.0	0.0	0.80	0.80	175.2	215.2	1.23

Site: TCS 4408 [French Ave / Chapel Rd - Construction (Site

Folder: AM)]

French Ave / Chapel Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 30 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: Cha _l	pel Rd												
1 2	L2 T1	16 258	0 23	17 272	0.0 8.9	0.088 * 0.439	11.8 7.3	LOS A LOS A	0.6 3.0	4.4 22.7	0.65 0.74	0.55 0.64	0.65 0.74	39.6 40.0
3	R2	42	11	44	2.4	0.439	13.0	LOS A	3.0	22.7	0.76	0.66	0.76	37.8
Appr	oach	316	24	333	7.6	0.439	8.3	LOSA	3.0	22.7	0.74	0.64	0.74	39.6
East:	Frenc	h Ave												
4 5	L2 T1	39 57	2 2	41 60	5.1 3.5	0.139 * 0.305	17.1 12.1	LOS B LOS A	0.6 1.4	4.1 9.7	0.88 0.89	0.71 0.71	0.88 0.89	28.5 34.6
6	R2	37	0	39	0.0	0.305	16.7	LOS B	1.4	9.7	0.89	0.71	0.89	32.0
Appr	oach	133	4	140	3.0	0.305	14.9	LOS B	1.4	9.7	0.89	0.71	0.89	32.2
North	n: Chap	oel Rd												
7 8	L2 T1	15 315	0 33	16 332	0.0 10.5	0.308	12.5 7.0	LOS A	2.3	17.5 17.5	0.72 0.72	0.61 0.62	0.72 0.72	40.0 40.5
9 Appro	R2 oach	51 381	34	54 401	2.0 8.9	0.308	12.6 8.0	LOS A	2.3	14.5 17.5	0.72 0.72	0.64	0.72	39.1 40.3
West	:: Frenc	ch Ave												
10	L2	30	1	32	3.3	0.105	17.0	LOS B	0.4	3.1	0.88	0.70	0.88	30.9
11	T1	68	1	72	1.5	0.236	11.8	LOS A	1.1	7.9	0.88	0.68	0.88	35.8
12	R2	11	0	12	0.0	0.236	16.4	LOS B	1.1	7.9	0.88	0.68	0.88	33.7
Appr	oach	109	2	115	1.8	0.236	13.7	LOSA	1.1	7.9	0.88	0.68	0.88	34.2
All Vehic	cles	939	64	988	6.8	0.439	9.7	LOSA	3.0	22.7	0.77	0.65	0.77	37.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Movem	ent Perf	orman	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Et Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
South: Chape	l Rd										
P1 Full	50	53	9.6	LOS A	0.0	0.0	0.80	0.80	175.2	215.2	1.23
East: French	Ave										
P2 Full	50	53	9.6	LOS A	0.0	0.0	0.80	0.80	175.2	215.2	1.23

Site: TCS 4408 [French Ave / Chapel Rd - TTP (Site Folder:

ĀM)]

French Ave / Chapel Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU	JMES	DEM. FLO	WS	Deg. Satn		Level of Service	95% B <i>A</i> QUE	EUE	Prop. E Que	Effective Stop		Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	h: Cha	pel Rd												
1	L2	16	0	17	0.0	0.075	10.7	LOSA	0.7	5.1	0.52	0.47	0.52	41.1
2	T1	274	39	288	14.2	0.374	6.1	LOSA	3.3	25.6	0.60	0.55	0.60	42.1
3	R2	42	1	44	2.4	* 0.374	11.7	LOSA	3.3	25.6	0.62	0.56	0.62	39.5
Appr	oach	332	40	349	12.0	0.374	7.0	LOSA	3.3	25.6	0.60	0.54	0.60	41.6
East:	Frenc	h Ave												
4	L2	39	2	41	5.1	0.155	21.8	LOS B	0.8	5.5	0.90	0.71	0.90	25.6
5	T1	57	2	60	3.5	* 0.353	17.0	LOS B	1.8	13.2	0.92	0.73	0.92	31.3
6	R2	37	0	39	0.0	0.353	21.6	LOS B	1.8	13.2	0.92	0.73	0.92	28.5
Appr	oach	133	4	140	3.0	0.353	19.7	LOS B	1.8	13.2	0.91	0.73	0.91	28.9
North	n: Chap	oel Rd												
7	L2	15	0	16	0.0	0.251	11.3	LOSA	2.5	19.4	0.58	0.50	0.58	41.6
8	T1	329	47	346	14.3	0.251	5.8	LOSA	2.5	19.4	0.58	0.52	0.58	42.7
9	R2	51	1	54	2.0	0.251	11.3	LOSA	2.1	15.9	0.58	0.55	0.58	40.6
Appr	oach	395	48	416	12.2	0.251	6.7	LOSA	2.5	19.4	0.58	0.52	0.58	42.3
West	:: Frend	ch Ave												
10	L2	30	1	32	3.3	0.117	21.6	LOS B	0.6	4.1	0.90	0.70	0.90	28.0
11	T1	68	1	72	1.5	0.271	16.6	LOS B	1.5	10.7	0.90	0.70	0.90	32.3
12	R2	11	0	12	0.0	0.271	21.1	LOS B	1.5	10.7	0.90	0.70	0.90	30.1
Appr	oach	109	2	115	1.8	0.271	18.4	LOS B	1.5	10.7	0.90	0.70	0.90	30.9
All Vehic	cles	969	94	1020	9.7	0.374	9.9	LOSA	3.3	25.6	0.67	0.58	0.67	37.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Movem	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec
South: Chape	l Rd										
P1 Full	50	53	14.5	LOS B	0.1	0.1	0.85	0.85	180.0	215.2	1.20
East: French	Ave										
P2 Full	50	53	14.5	LOS B	0.1	0.1	0.85	0.85	180.0	215.2	1.20

Site: TCS 4408 [French Ave / Chapel Rd - Future Base (Site

Folder: PM)]

French Ave / Chapel Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h	PUT JMES HV] veh/h	DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Cha	pel Rd												
1 2	L2 T1	89 472	0 36	94 497	0.0 7.6	0.138 * 0.688	10.3 9.2	LOS A LOS A	1.3 8.7	9.4 64.6	0.51 0.79	0.61 0.76	0.51 0.85	38.6 37.1
3	R2	76	0	80	0.0	0.688	15.1	LOS B	8.7	64.6	0.81	0.77	0.88	35.6
Appro	oach	637	36	671	5.7	0.688	10.1	LOSA	8.7	64.6	0.75	0.74	0.81	37.1
East:	Frenc	h Ave												
4 5	L2 T1	48 64	0 0	51 67	0.0	0.218 * 0.465	23.0 18.5	LOS B LOS B	1.0 2.2	6.8 15.4	0.93 0.96	0.72 0.76	0.93 0.96	25.1 30.4
6	R2	41	1	43	2.4	0.465	23.0	LOS B	2.2	15.4	0.96	0.76	0.96	27.5
Appro	oach	153	1	161	0.7	0.465	21.1	LOS B	2.2	15.4	0.95	0.75	0.95	28.1
North	ı: Chap	oel Rd												
7 8	L2 T1	44 527	0 34	46 555	0.0 6.5	0.479 0.479	11.6 7.2	LOS A	5.9 5.9	43.6 43.6	0.65 0.69	0.59 0.62	0.65 0.69	41.0 40.0
9 Appro	R2 pach	109 680	34	115 716	5.0	0.479 0.479	17.2 9.1	LOS B	3.8 5.9	27.1 43.6	0.83	0.74	0.83	33.8 38.6
West	: Frenc	ch Ave												
10	L2	53	0	56	0.0	0.240	23.1	LOS B	1.1	7.5	0.94	0.73	0.94	27.3
11	T1	60	0	63	0.0	0.423	18.3	LOS B	2.0	13.8	0.95	0.75	0.95	30.5
12	R2	36	0	38	0.0	0.423	22.9	LOS B	2.0	13.8	0.95	0.75	0.95	28.3
Appro	oach	149	0	157	0.0	0.423	21.1	LOS B	2.0	13.8	0.94	0.74	0.94	28.8
All Vehic	eles	1619	71	1704	4.4	0.688	11.7	LOSA	8.7	64.6	0.77	0.70	0.79	35.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Movem	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec
South: Chape	l Rd										
P1 Full	50	53	14.5	LOS B	0.1	0.1	0.85	0.85	180.0	215.2	1.20
East: French	Ave										
P2 Full	50	53	14.5	LOS B	0.1	0.1	0.85	0.85	180.0	215.2	1.20

Site: TCS 4408 [French Ave / Chapel Rd - Construction (Site

Folder: PM)]

French Ave / Chapel Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INF VOLU [Total veh/h	PUT JMES HV] veh/h	DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: Cha	pel Rd												
1	L2	89	0	94	0.0	0.138	10.3	LOSA	1.3	9.4	0.51	0.61	0.51	38.6
2	T1	472	36	497	7.6	* 0.688	9.2	LOSA	8.7	64.6	0.79	0.76	0.85	37.1
3	R2	76	0	80	0.0	0.688	15.1	LOS B	8.7	64.6	0.81	0.77	0.88	35.6
Appr	oach	637	36	671	5.7	0.688	10.1	LOSA	8.7	64.6	0.75	0.74	0.81	37.1
East:	Frenc	h Ave												
4	L2	48	0	51	0.0	0.218	23.0	LOS B	1.0	6.8	0.93	0.72	0.93	25.1
5	T1	64	0	67	0.0	* 0.465	18.5	LOS B	2.2	15.4	0.96	0.76	0.96	30.4
6	R2	41	1	43	2.4	0.465	23.0	LOS B	2.2	15.4	0.96	0.76	0.96	27.5
Appr	oach	153	1	161	0.7	0.465	21.1	LOS B	2.2	15.4	0.95	0.75	0.95	28.1
North	n: Cha _l	pel Rd												
7	L2	44	0	46	0.0	0.479	11.6	LOSA	5.9	43.6	0.65	0.59	0.65	41.0
8	T1	527	34	555	6.5	0.479	7.2	LOSA	5.9	43.6	0.69	0.62	0.69	40.0
9	R2	109	0	115	0.0	0.479	17.2	LOS B	3.8	27.1	0.83	0.74	0.83	33.8
Appr	oach	680	34	716	5.0	0.479	9.1	LOSA	5.9	43.6	0.71	0.64	0.71	38.6
West	:: Fren	ch Ave												
10	L2	53	0	56	0.0	0.240	23.1	LOS B	1.1	7.5	0.94	0.73	0.94	27.3
11	T1	60	0	63	0.0	0.423	18.3	LOS B	2.0	13.8	0.95	0.75	0.95	30.5
12	R2	36	0	38	0.0	0.423	22.9	LOS B	2.0	13.8	0.95	0.75	0.95	28.3
Appr	oach	149	0	157	0.0	0.423	21.1	LOS B	2.0	13.8	0.94	0.74	0.94	28.8
All Vehic	cles	1619	71	1704	4.4	0.688	11.7	LOSA	8.7	64.6	0.77	0.70	0.79	35.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service		BACK OF EUE Dist]	Prop. Et Que	ffective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Chape	l Rd										
P1 Full	50	53	14.5	LOS B	0.1	0.1	0.85	0.85	180.0	215.2	1.20
East: French	Ave										
P2 Full	50	53	14.5	LOS B	0.1	0.1	0.85	0.85	180.0	215.2	1.20

Site: TCS 4408 [French Ave / Chapel Rd - TTP (Site Folder:

PM)]

French Ave / Chapel Rd Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 50 seconds (Site Optimum Cycle Time - Minimum

Delay)

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: Cha	pel Rd												
1	L2	89	0	94	0.0	0.124	9.3	LOSA	1.4	9.9	0.41	0.56	0.41	39.9
3	T1 R2	490 76	54 0	516 80	11.0 0.0	* 0.622 0.622	7.4 13.2	LOS A LOS A	9.0 9.0	68.0 68.0	0.68 0.71	0.65 0.65	0.68 0.71	39.8 37.8
Appr	oach	655	54	689	8.2	0.622	8.3	LOSA	9.0	68.0	0.64	0.64	0.64	39.5
East:	Frenc	h Ave												
4 5	L2 T1	48 64	0 0	51 67	0.0	0.272 * 0.594	29.0 25.2	LOS C LOS B	1.2 2.9	8.7 20.2	0.96 0.99	0.73 0.82	0.96 1.10	22.2 26.9
6	R2	41	1	43	2.4	0.594	29.8	LOS C	2.9	20.2	0.99	0.82	1.10	23.9
Appr	oach	153	1	161	0.7	0.594	27.6	LOS B	2.9	20.2	0.98	0.79	1.06	24.7
North	n: Chap	oel Rd												
7 8	L2 T1	44 547	0 54	46 576	0.0 9.9	0.433 0.433	10.4 5.9	LOS A LOS A	6.0 6.0	44.9 44.9	0.53 0.57	0.49 0.54	0.53 0.57	42.7 42.2
9	R2	109	0	115	0.0	0.433	15.1	LOS B	4.2	30.4	0.70	0.68	0.70	35.7
Appr	oach	700	54	737	7.7	0.433	7.7	LOSA	6.0	44.9	0.59	0.56	0.59	40.7
West	:: Frend	ch Ave												
10	L2	53	0	56	0.0	0.300	29.1	LOS C	1.4	9.7	0.96	0.74	0.96	24.4
11	T1	60	0	63	0.0	0.533	24.7	LOS B	2.6	18.0	0.98	0.79	1.03	27.2
12 Appr	R2	36	0	38 157	0.0	0.533	29.3	LOS C	2.6	18.0	0.98	0.79	1.03	24.8
Appr	oacn	149	U	107	0.0	0.533	27.4	LO9 B	∠.0	18.0	0.98	0.77	1.00	25.6
All Vehic	cles	1657	109	1744	6.6	0.622	11.5	LOSA	9.0	68.0	0.68	0.63	0.69	35.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Pedestrian I	Pedestrian Movement Performance										
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A		BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec
South: Chape	l Rd										
P1 Full	50	53	19.4	LOS B	0.1	0.1	0.88	0.88	184.9	215.2	1.16
East: French	Ave										
P2 Full	50	53	19.4	LOS B	0.1	0.1	0.88	0.88	184.9	215.2	1.16

Appendix C – Temporary Transport Management Plan October School Holidays 2022

Temporary Transport Management Plan

Sydenham to Bankstown Line October 2022 shutdown

October School Holidays 2022

transport.nsw.gov.au

Table of Contents

Executive Summary	3
Transport Plan	4
Planned Rail Shutdown	4
Key features of the Temporary Transport Plan	4
Network Infrastructure	6
Bus Stop and Shelters	6
Existing Facilities at Interchange Stations	6
Network Plan	7
Network Management	7
Network Performance Monitoring	7
Walking and Cycling	8
Sydenham to Bankstown Walking and Cycling Strategy	8
Walking and Cycling management during the Possession	8
Customer Engagement and Information	10
Customer Analysis	10
Timetable development	10
Patronage demand	10
Unrestricted bus capacity	11
July 2022 TTP Supply vs Demand	11
Stakeholder Engagement	11
Customer Information	11
Wayfinding and Customer service	12
Appendices	13
Appendix B - Temporary Bus Stop Infrastructure Assessment	16
Appendix C – Temporary Transport Plan Bus Routes	19
Appendix D – Bus Stop & Layover locations including Temporary Parking Changes	24
Appendix E – Stakeholder Consultation List	36
Appendix F – Customer Information Staffing Locations	42

Executive Summary

The Sydney Metro City & Southwest will upgrade all 10 stations between Sydenham and Bankstown to meet current accessibility standards before converting the T3 Bankstown Line to Metro operations. This upgrade will include various construction activities that require the temporary closure of part or all of the rail line.

Stations between Sydenham and Birrong, along the T3 Bankstown Line, will be temporarily closed between **2am Saturday 24 September to 2am Monday 10 October 2022** due to Sydney Metro upgrade works.

The shutdown is needed to allow construction to take place on Sydney Metro, which will extend from Sydney's North West, under Sydney Harbour through new underground city stations to Bankstown.

Frequent bus services will replace trains between the closed stations during this period.

A Temporary Transport Plan has been successfully delivered across holiday periods in 2019, 2020, 2021 and 2022. Shutdowns of the T3 Bankstown Line are strategically planned to reduce the impact on customers by taking place during school holiday periods when demand across the network is typically at least 15% lower than during the school term. This planned shutdown has been cross-examined with Advanced Analytics and Insights' forecasting tool, which outlines the projected patronage demand for the period.

Transport Plan

Planned Rail Shutdown

To enable work to take occur between 24 September to 9 October 2022 (inclusive), the T3 Bankstown Line will be closed.

Between 24 September to 7 October 2022, the T3 Bankstown Line will be closed between Birrong and Sydenham, and between the 8 October to 9 October stations will be closed between Birrong and Sydenham as well as Birrong to Cabramatta. This extension between Birrong to Cabramatta is part of the regular weekend trackwork planned by Sydney Trains.

Sydenham will remain open during the closure as an interchange station between trains and replacement bus services. Trains will continue to operate west of Birrong Station and along the City Circle line between the 24 September to 7 October 2022. Between 8 to 9 October stations between Birrong and Cabramatta will also be closed with Cabramatta Station remained open during this weekend.

During the NRL grand final day on Sunday 02 October 2022, extra bus services added to the standard weekend timetable. In addition, the standby buses will be effectively deployed by the bus marshals where required, to cover the additional passenger demand caused by the NRL grand final.

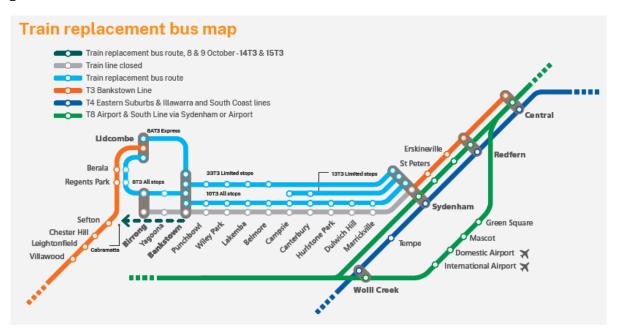


Figure 1: Replacement and alternative services – Sat 24 September to Sunday 9 October 2022: TfNSW

Key features of the Temporary Transport Plan

- Frequent, all stops bus services connecting closed stations along the T3 Bankstown Line (Further detail in Appendix A).
- Express and limited stop services during peak and off-peak periods for trips towards Sydenham.

- Low floor accessible buses will be provided on the majority of services.
- Bus marshals will also be available during the busiest parts of the day to assist customers with accessibility needs.

Network Infrastructure

Bus Stop and Shelters

To ensure bus services' safe and efficient operation, layover and temporary bus space details have been provided to the relevant Council's Local Traffic Committees (Appendix D). The Council's Local Traffic Committees have previously publicly endorsed these plans for previous TTPs.

A site visit will be conducted in September to assess the lighting in place at each location. Temporary lighting towers will be installed at bus stops where existing lighting levels have been deemed to be low.

Appendix B outlines the location of bus stops and the facilities in place during the shutdown. It also details the locations where temporary lighting towers will be used during the shutdown. Any additional lighting will be directed towards customer areas (bus stops). Any environmental impacts will be assessed and lighting direction will be changed if there is an impact on surrounding dwellings.

Temporary Bus Stops will utilise existing awnings, or additional cover (marquees) will be provided. During the closure, there will be support staff around train stations, including customer service staff (Appendix F), bus marshals and traffic controllers, to help customers plan their journey and to guide them to their alternative bus or train service.

Existing Facilities at Interchange Stations

During the closure key interchange stations are Sydenham, Regents Park and Lidcombe. All stations have extensive facilities including lifts and wheelchair accessibility.

- Sydenham Station: Lifts and wheelchair accessibility. Complete stop information (https://transportnsw.info/stop?q=10101326#/)
- Regents Park Station: Lifts and wheelchair accessible. Complete stop information (https://transportnsw.info/stop?q=214310#/)
- Lidcombe Station: Lifts and wheelchair accessible. Complete stop information (https://transportnsw.info/stop?q=214110#/)

Network Plan

Network Management

Key corridors including Illawarra Road, Canterbury Road, The Boulevarde, Sydenham Road and intersections along each route, have been assessed to determine any temporary changes required to allow buses to operate while maintaining traffic flow for other road users.

Due to the period of operation, there is a reduction in traffic demands. There is no requirement for Traffic Control Sites (TCS) to be modified. However, Network Operations specialists will be monitoring and adjusting traffic signal operations across the area in real-time to optimise the performance of the road network.

The temporary bus replacement routes have been planned to allow express bus routes to use main road corridors (e.g. Canterbury Road). In contrast, all station buses will predominantly use local roads to access stations. This decision reduces the impact on the network and gives customers greater flexibility during the planned shutdown.

To reduce the impact on the local community Sydney Metro and Customer Journey Planning (TFNSW) are working together to mitigate any impacts expected from construction activities. Ongoing meetings in the form of a Traffic Coordination Group and a Traffic & Transport Liaison Group form the collaborative approach to mitigating the impact on the community and ensuring Metro Construction works remain on track.

Network Performance Monitoring

During the planned shutdown crews will be rostered across the AM/PM peak to monitor and assist with the clearance of any incidents and manage unusual congestion on key replacement bus corridors. Network Operations specialists will monitor and adjust traffic signal operations (SCATS) across the area in real-time to optimise the performance of the road network.

A dedicated Transport Commander will patrol the network.

Dedicated tow-trucks will be on-call to manage the Canterbury Road corridor and at critical interchanges at Sydenham, Campsie and Bankstown, clearing incidents and vehicles illegally parked.

Walking and Cycling

Sydenham to Bankstown Walking and Cycling Strategy

Sydney Metro developed the Sydenham to Bankstown Walking and Cycling Strategy, to identify opportunities and works to connect stations with the surrounding communities, by connecting to or enhancing existing pedestrian and cyclist paths.

The strategy aims to encourage walking and cycling as a first/last mile transport mode and to expand the functional metro station catchment areas to maximise the percentage of customers who access metro stations through sustainable modes. The walking and cycling strategy also identifies opportunities and works to improve east-west pedestrian and cyclist facilities between Sydenham and Bankstown.

The Strategy was finalised in 2021 and provided to Inner West Council and Canterbury Bankstown Council to inform the planning of their Active Transport networks. To support the TTP, widening of the footpath at Railway Parade at Sydenham was completed. Existing bike parking will be available at stations along the alignment with 36 bike parking spaces at Sydenham and 24 bike parking spaces at Bankstown. Similarly, existing walking and cycling facilities will be utilised during the shutdown.

The Sydenham to Bankstown Walking and Cycling Strategy identifies works to be delivered by Sydney Metro and 'complementary infrastructure' items to be provided by other parties, such as local councils. Improved east-west walking and cycling connections will be delivered by Sydney Metro as part of the Sydney Metro City & Southwest project as required under Condition E53 of the project approval. These connections are still being developed and subject to change. Any walking and cycling works proposed during the October shutdown on behalf of Sydney Metro would be those incorporated into the station delivery packages, including station plazas, connecting footpaths and interchange facilities.

Several other infrastructure options are also identified that could be delivered by stakeholders as part of other projects or considered for further investigation. The Sydney Metro City & Southwest project will safeguard opportunities for stakeholders to deliver these other infrastructure options in the future.

As part of the trip planning, walking and cycling options are provided on the Transportnsw.info website as well as replacement bus services, making it easy for customers to plan their walking or cycling route. The Transportnsw.info website also provides information for customers on facilities available at each station, including cycle parking.

Walking and Cycling management during the Possession

During the October Possession, temporary restrictions and disruptions to pedestrian and cycling access may occur. Under the Sydney Metro City and Southwest, Sydenham to Bankstown Upgrade Condition of Approval E52, safe pedestrian and cyclist access will be maintained around construction sites during the October Possession.

In circumstances where pedestrian and cyclist access is restricted or removed due to construction activities, an alternate route which complies with the relevant standards will be provided and signposted.

In addition, Sydney Metro's Construction Contractors would undertake condition surveys to confirm changes to routes proposed to be used by pedestrians and/or cyclists are suitable (e.g. suitably paved and well lit), with identified modification requirements discussed with the Inner West and/or Canterbury-Bankstown councils and implemented prior to the use of the routes.

Under Sydney Metro City and Southwest Sydenham to Bankstown Upgrade Revised Environmental Mitigation Measure TC7, where existing cycle facilities (e.g. bike parking) would be temporarily unavailable at a station during the October possession, suitable replacement facilities would be provided while the facility is unavailable.

Customer Engagement and Information

Customer Analysis

From the analysis of historical opal data, the school holiday periods see a reduction in patronage demand, particularly during the AM peak period where demand is typically concentrated in a smaller timeframe.

In addition, a rail line closure during a school holiday period benefits the bus procurement arrangements with a reduced demand on the bus fleet due to no school-based operations.

The available school holidays of July, October and December/January were reviewed against historical opal demand, known special events and the approved Sydney Trains Annual Works Program for viability. There is minimal change in overall or peak period demand across the three school holiday periods with the determination due to the impact on major special events and the Sydney Trains Annual Works Program.

Timetable development

The timetables for the TTP were developed based on the following items:

- Determining the expected patronage demand
- Assuming all bus services carrying passengers at capacity i.e. without any seats/capacity restrictions
- Effectively using and applying the lessons learnt from the July 2022 TTP.

Patronage demand

The Advanced Analytics and Insights team in TfNSW developed a forecasting tool using the historical patronage demands. This tool used for determining the expected patronage during the September/October 2022 school holiday period. The forecasting tool uses a machine learning model which utilises historical opal tap-on/tap-off data to forecast the patronage volumes for future years. The tool forecasts the volumes for all five modes of transport (Bus, Ferry, Light Rail, Road and Train). The predicted values from the forecasting tool are categorised into the following three groups:

- 1. Upper-band prediction
- 2. Model prediction (Average)
- 3. Lower-band prediction

For predicting the expected patronage usage along the T3 Bankstown Line, the 'Upper-band prediction' values were utilised as the preferred range of data best to indicate the highest number of patronage predictions. The forecasting tool predicted that the overall train patronage demand would be 27 percent (27.19%) lower than the 2019 patronage volumes for the same school holiday period in October (pre-pandemic levels). The reduction percentage is directly in relation to current patronage demand due to the impact of Covid-19 on customers and the community.

Unrestricted bus capacity

As of 30 April 2022, TfNSW has lifted capacity restrictions on all modes of public transport. As such it was assumed that all TTP buses will carry 54 passengers per bus. The number of buses required per passenger demand was calculated using this capacity.

July 2022 TTP Supply vs Demand

The passenger volume data captured through bus marshals were compared against the supply during the TTP. The analysis showed that there was extra supply of buses during the AM peak and PM peak periods. As such, some reductions applied to the peak hours in the September/October TTP timetables.

Stakeholder Engagement

A comprehensive stakeholder management plan has been implemented to inform and engage transport customers, businesses and the local community before the Sydenham to Bankstown Line shutdown.

Meetings commenced in August and will continue until late September. These meetings include Council, Local MPs, Community & Business Groups, Health and Education facilities. The in-depth schedule of engagement is attached (Appendix F).

In addition, local residents have been informed of proposed parking changes via:

- Letter box drop notification
- Station signage posters
- Online website

Customer Information

A mix of channels will be used to make customers aware of the shutdown and the alternative transport options including:

At station and on mode:

- Station Posters
- Information Screens
- Guard Announcements
- Customer brochures (Appendix A).

Websites:

- transportnsw.info
- mysydney.nsw.gov.au
- sydneymetro.info

Apps:

- Opal Travel App
- Third party Apps (e.g. Tripview, NextThere)

Social Media:

- Twitter
- Facebook

Stakeholder Communication:

- Community notifications
- Stakeholder emails
- Multi-lingual customer brochures
- Newsletter content

Wayfinding and Customer service

To assist customers with wayfinding and navigating their way to rail replacement buses and alternative train services, a comprehensive wayfinding and customer service strategy has been developed. This includes:

- Wayfinding signage at stations and bus stops
- Guard announcements at open stations
- During the busiest parts of the day, bus marshals, station staff, and additional customer service staff assist customers with accessible needs (Appendix A).
- Customer service street teams will also inform customers about the closure prior to the shutdown and assist commuters with information on the location of bus stops.

Appendix F details starting locations for customer service staff during the shutdown in and around each station. This will be monitored during the shutdown and amended based on operational requirements and feedback.

Appendices

Appendix A - Replacement Buses on T3 Bankstown Line Customer Brochure

Appendix B-Temporary Bus Stop Infrastructure Assessment

Appendix C – Temporary Transport Plan Bus Routes

Appendix D - Bus Stop & Layover locations including Temporary Parking Changes

Appendix E – Stakeholder Consultation List

Appendix F - Customer Information Staffing Locations

Appendix A - Replacement Buses on T3 Bankstown Line Customer Brochure

Trackwork

Saturday 24 September – Sunday 9 October

Buses replace trains on the T3 Bankstown Line

You must wear a face mask on public transport. Information was correct at the time of print.

Allow extra travel time and plan ahead at transportnsw.info

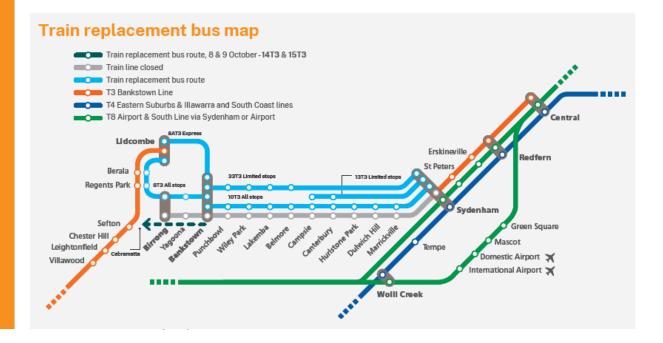
Frequently asked questions

Do I need an Opal card to use the replacement buses?

You will need a valid Opal card, American Express, Mastercard or Visa card to pay for travel on train replacement buses.

Will stations remain open even though trains won't be running?

Some train stations on the T3 Bankstown Line between Sydenham and Birrong will be closed completely during the 16 day period, including concourses and toilet facilities within stations. Sydenham station and their facilities will remain open.


Trackwork for rail upgrade

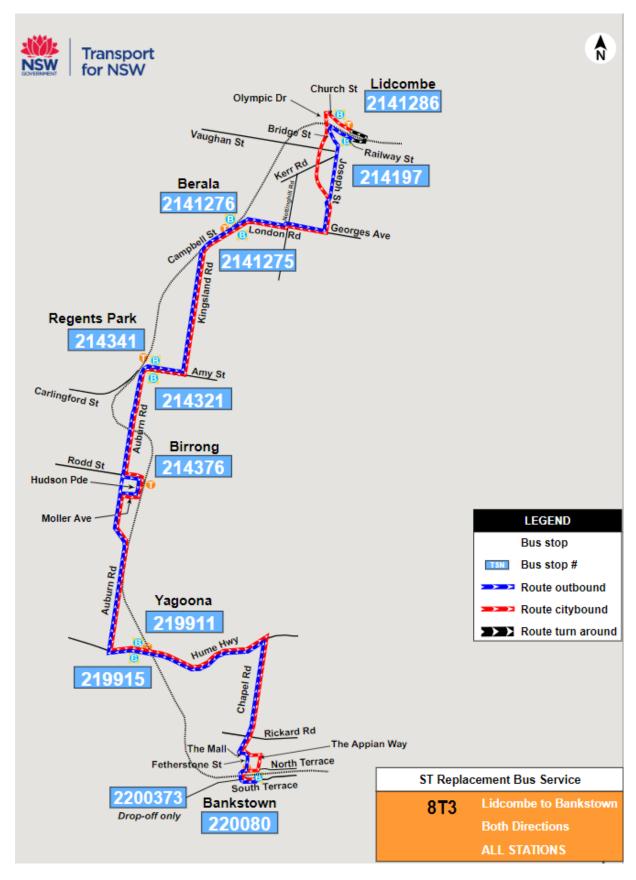
Replacement buses and alternative services

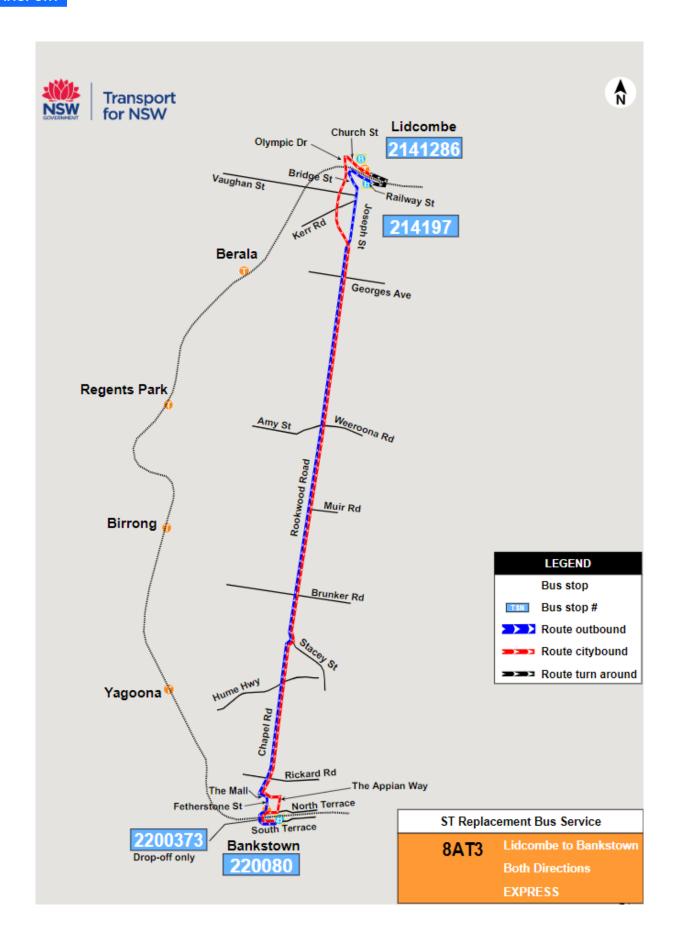
T3 Bankstown Line

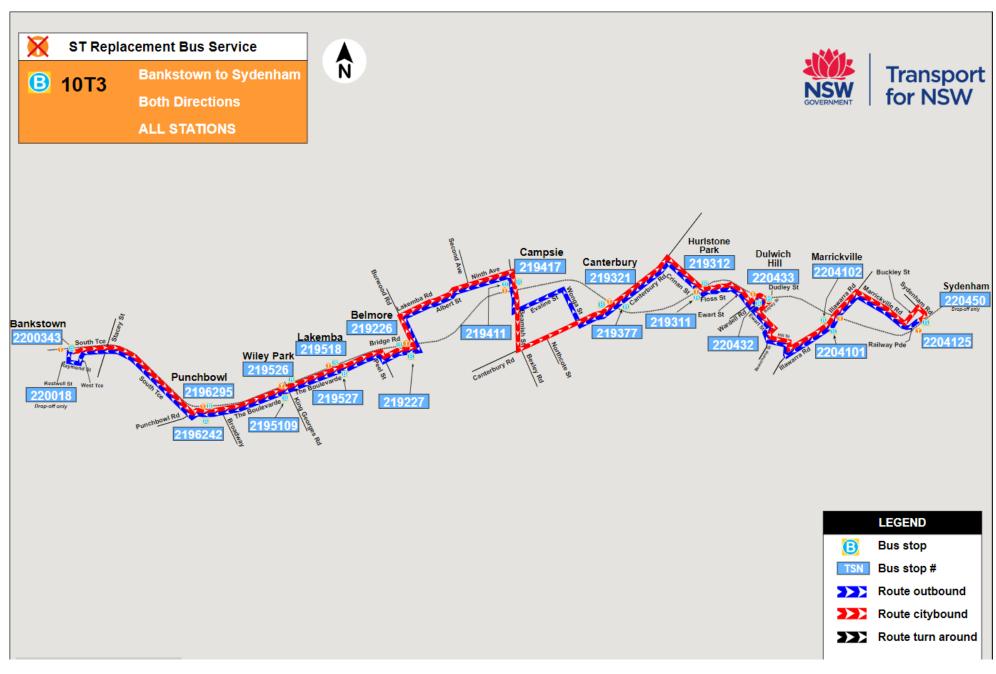
- Buses replace trains between Lidcombe and Sydenham via Bankstown
- Trains run to a changed timetable between Liverpool and City via Regents Park, stopping at all stations between Cabramatta and Lidcombe from 24 September to 7 October
- For travel between Sydenham and Bankstown, use replacement bus routes:
 - o 10T3 All stops between Sydenham and Bankstown
 - 33T3 Limited stops: Sydenham to Belmore, then all stops to Bankstown

- 13T3 Limited stops: Sydenham to Canterbury, then Campsie
- For travel between Bankstown and Lidcombe, use replacement bus routes:
 - 8T3 All stops between Bankstown and Lidcombe
 - o 8AT3 Express: Bankstown and Lidcombe
- On Saturday 8 and Sunday 9 October, buses also replace trains between Bankstown and Cabramatta. Use replacement bus routes;
 - 14T3 All stops between Bankstown and Cabramatta
- o 15T3 Express: Bankstown and Cabramatta

Appendix B - Temporary Bus Stop Infrastructure Assessment

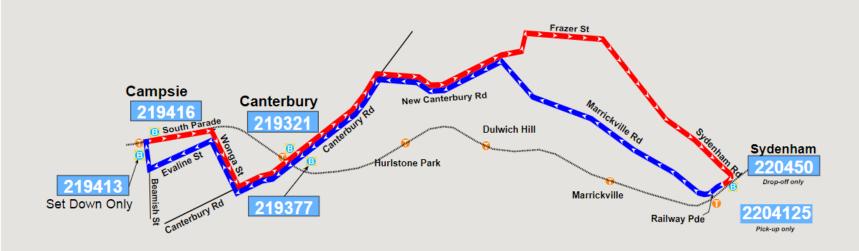

Route	→1 Direction ▼	Stop ▼ Station ▼	TSN ▼ STOP_NAME ▼
10T3	Inbound	1 Bankstown Station	2200343 Bankstown Station, Stand G
10T3	Inbound	2 Punchbowl Station	2196295 The Boulevarde opp Broadway
10T3	Inbound	3 Wiley Park Station	219526 The Boulevarde after King Georges Rd
10T3	Inbound	4 Lakemba Station	219518 Lakemba Station, The Boulevarde
10T3	Inbound	5 Belmore Station	219226 Bridge Rd opp Canterbury League Club
10T3	Inbound	6 Campsie Station	219417 Campsie Station, Beamish St, Stand C
10T3	Inbound	7 Canterbury Station	219321 Canterbury Station, Canterbury Rd, Stand E
10T3	Inbound	8 Hurlstone Park Station	219312 Floss St opp Hurlstone Park Station
10T3	Inbound	9 Dulwich Hill Station	220433 Dulwich Hill Station, Dudley St
10T3	Inbound	10 Marrickville Station	2204102 Illawarra Rd opp Marrickville Station
10T3	Inbound	11 Sydenham Station	220450 Sydenham Station, Railway Pde, Stand E
10T3	Outbound	1 Sydenham Station	2204125 Sydenham Station, Railway Pde, Stand C
10T3	Outbound	2 Marrickville Station	2204101 Marrickville Station, Illawarra Rd
10T3	Outbound	3 Dulwich Hill Station	220432 Dudley St opp Dulwich Hill Station
10T3	Outbound	4 Hurlstone Park Station	219311 Hurlstone Park Station, Floss St
10T3	Outbound	5 Canterbury Station	219377 Canterbury Rd at Tincombe St
10T3	Outbound	6 Campsie Station	219411 Campsie Station, Beamish St, Stand B
10T3	Outbound	7 Belmore Station	219227 Canterbury League Club, Bridge Rd
10T3	Outbound	8 Lakemba Station	219527 The Boulevarde opp Lakemba Station
10T3	Outbound	9 Wiley Park Station	2195109 The Boulevarde opp Wiley Park Station
10T3	Outbound	10 Punchbowl Station	2196242 Punchbowl Station, The Boulevarde
10T3	Outbound	11 Bankstown Station	220018 Restwell St at Stewart Lane
13T3	Inbound	1 Campsie Station	219416 Campsie Station, South Pde, Stand E
13T3	Inbound	2 Canterbury Station	219321 Canterbury Station, Canterbury Rd, Stand E
13T3	Inbound	3 Sydenham Station	220450 Sydenham Station, Railway Pde, Stand E
13T3	Outbound	1 Sydenham Station	2204125 Sydenham Station, Railway Pde, Stand C
13T3	Outbound	2 Canterbury Station	219377 Canterbury Rd at Tincombe St
13T3	Outbound	3 Campsie Station	219413 ANZAC Mall, Beamish St
33T3	Inbound	1 Bankstown Station	2200343 Bankstown Station, Stand G
33T3	Inbound	2 Punchbowl Station	2196295 The Boulevarde opp Broadway
33T3	Inbound	3 Wiley Park Station	219526 The Boulevarde after King Georges Rd
33T3	Inbound	4 Lakemba Station	219518 Lakemba Station, The Boulevarde
33T3	Inbound	5 Belmore Station	219226 Bridge Rd opp Canterbury League Club
33T3	Inbound	6 Sydenham Station	220450 Sydenham Station, Railway Pde, Stand E
33T3	Outbound	1 Sydenham Station	2204125 Sydenham Station, Railway Pde, Stand C
33T3	Outbound	2 Belmore Station	219227 Canterbury League Club, Bridge Rd
33T3	Outbound	3 Lakemba Station	219527 The Boulevarde opp Lakemba Station
33T3	Outbound	4 Wiley Park Station	2195109 The Boulevarde opp Wiley Park Station
33T3	Outbound	5 Punchbowl Station	2196242 Punchbowl Station, The Boulevarde
33T3	Outbound	6 Bankstown Station	220018 Restwell St at Stewart Lane
8AT3	Inbound	1 Lidcombe Station	2141286 Lidcombe Station, Church St
8AT3	Inbound	2 Bankstown Station	2200373 Bankstown Station, Stand C
8AT3	Outbound	1 Bankstown Station	220080 Bankstown Station, Stand J
8AT3	Outbound	2 Lidcombe Station	214197 Lidcombe Station, Railway St, Stand C
8T3	Inbound	1 Lidcombe Station	2141286 Lidcombe Station, Church St
8T3	Inbound	2 Berala Station	2141275 Campbell St opp Berala Station
8T3	Inbound	3 Regents Park Station	214321 Amy St opp Regents Park Library
8T3	Inbound	4 Birrong Station	214376 Birrong Station, Hudson Pde
8T3	Inbound	5 Yagoona Station	219911 Yagoona Station, Hume Hwy
8T3	Inbound	6 Bankstown Station	2200373 Bankstown Station, Stand C
8T3	Outbound	1 Bankstown Station	220080 Bankstown Station, Stand J
8T3	Outbound	2 Yagoona Station	219915 Hume Hwy opp Yagoona Station
8T3	Outbound	3 Birrong Station	214376 Birrong Station, Hudson Pde
8T3	Outbound	4 Regents Park Station	214341 Regents Park Library, Amy St
8T3	Outbound	5 Berala Station	2141276 Berala Station, Campbell St
8T3	Outbound	6 Lidcombe Station	214197 Lidcombe Station, Railway St, Stand C

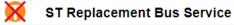

Train Station	Bus stop TSN	Bus Stop Location	Shelter Required	Awning	Existing Bus Stop Shelter	Marquee Provided	Additional Lighting Required	CCTV Required
Bankstown	2200343	Bankstown Station, Stand G	Yes	No	Yes	Yes 2 x (6m x 3m) & 1 x (3m x 3m)	Lighting Required	Bus Interchange - Yes
Belmore	219226	Bridge Rd before Belmore Rd	Yes	No	No	Yes x 1 (6m x 3m)	No	No
Belmore	219227	Bridge Rd after Belmore Rd	Yes	No	No	Yes 1 x (6m x 3m)	No	No
Berala	2141275	Berala Station, Campbell St	No	No	Yes	No	Lighting Required	No
Berala	2141276	Berala Station, Campbell St	No	Yes	No	No	No	No
Birrong	214376	Birrong Station, Hudson Pde	Yes	No	No	1 x (6m x 3m)	Lighting Required	No
Campsie	219417	Campsie Station, Beamish St, Stand C	No	Yes	No	No	No	No
Campsie	219411	Campsie Station, Beamish St, Stand B	Yes	Yes	No	No	No	No
Campsie	219416	South Pde After Beamish St	Yes	No	No	Yes 1 x (6m x 2m)	Lighting Required	Duke St - Yes
Campsie	219413	Beamish St before Anzac Mall	No	No	No	No	No	No
Canterbury	219321	Opp Canterbury Station, Canterbury Rd	Yes	No	No	Yes 1 x (6m x 2m)	No	No
Canterbury	219377	Canterbury Station, near Tincombe St	Yes	Yes	No	Yes 1 x (6m x 2m)	No	No
Dulwich Hill	220433	Dulwich Hill Station, Dudley St	No	No	Yes	Yes 1 x (6m x 3m)	Lighting Required	No
Dulwich Hill	220432	Dudley St opp Dulwich Hill Station	Yes	No	No	No	No	No
Hurlstone Park	2193115	Crinan St Hurlstone Park Station	No	No	Yes	Yes 1 x (3m x 3m)	No	No
Hurlstone Park	2193116	Hurlstone Park Station, Crinan St	No	No	Yes	No	No	No


Train Station	Bus stop TSN	Bus Stop Location	Shelter Required	Awning	Existing Bus Stop Shelter	Marquee Provided	Additional Lighting Required	CCTV Required
Lakemba	219518	Lakemba Station, The Boulevarde	Yes	No	Yes x 1	Yes 1 x (6m x 3m)	No	No
Lakemba	219527	The Boulevarde opp Lakemba Station	Yes	Yes	No	No	No	No
Lidcombe	2141286	Lidcombe Station, Church St	Yes	No	No	Yes 1 x (9m x 3m)	Lighting Required	Church St - Yes
Lidcombe	214197	Lidcombe Station, Railway St	No	Yes	Yes	No	No	No
Marrickville	2204102	Illawarra Rd opp Marrickville Station	No	Yes	No	No	No	No
Marrickville	2204101	Marrickville Station, Illawarra Rd	Yes	Yes	No	No	No	No
Punchbowl	2196282	The Boulevarde opp Broadway	No	Yes	No	Yes 1 x (3m x 3m)	Lighting Required	No
Punchbowl	2196281	Punchbowl Station, The Boulevarde	No	Yes	No	No	No	No
Regents Park	214321	Regents Park Station, Amy St	No	No	Yes	No	No	Amy St - Yes
Regents Park	214341	Regents Park Station, Amy St	No	Yes	No	No	No	No
Sydenham	220450	Sydenham Station, Railway Pde, Stand C	No	No	No	Yes 2 x (6m x 3m) &	Yes 1 x Railway Pde Stand C	No
Sydenham	2204125	Railway Pde Before Gleeson Ave	Yes	Yes	No	Yes 1 x (3m x 3m)	Yes 1 x Lighting at Lower Railway Pde	Lower Railway Pde - Yes
Wiley Park	219526	The Boulevarde after King Georges Rd	Yes	No	No	Yes 1 x (6m x 2m)	No	No
Wiley Park	2195109	The Boulevarde opp Wiley Park Station	Yes	No	Yes	Yes 1 x (6m x 2m)	No	No
Yagoona	219911	Yagoona Station, Hume Hwy	No	No	Yes	No	No	No
Yagoona	219915	Yagoona Station, Hume Hwy	No	Yes	No	No	No	No


OFFICIAL

Appendix C – Temporary Transport Plan Bus Routes





LEGEND				
Bus stop				
TSN Bus stop #				
>>>	Route outbound			
>>>>	Route citybound			
	Route turn around			

33T3

Bankstown to Sydenham

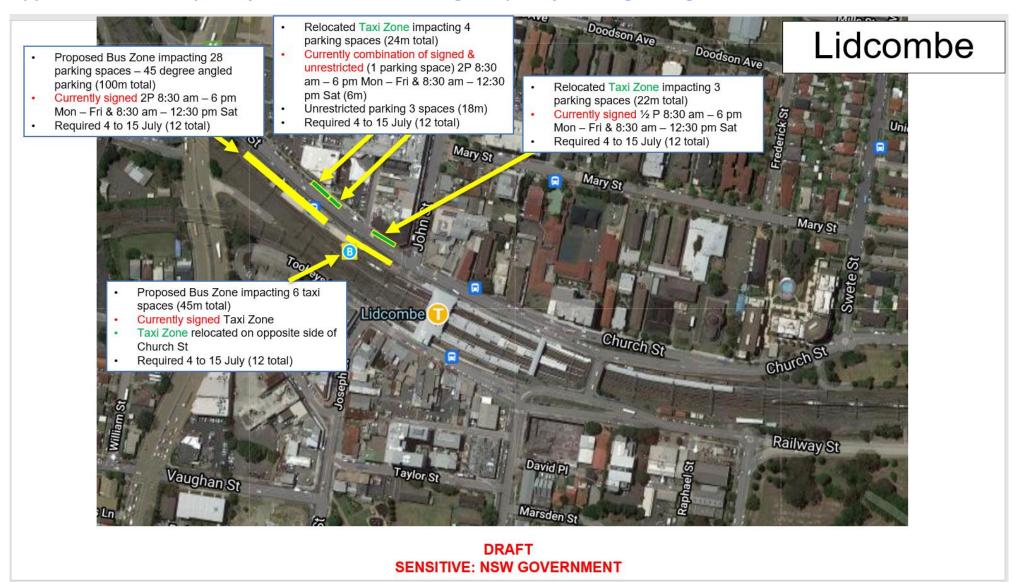
Both Directions

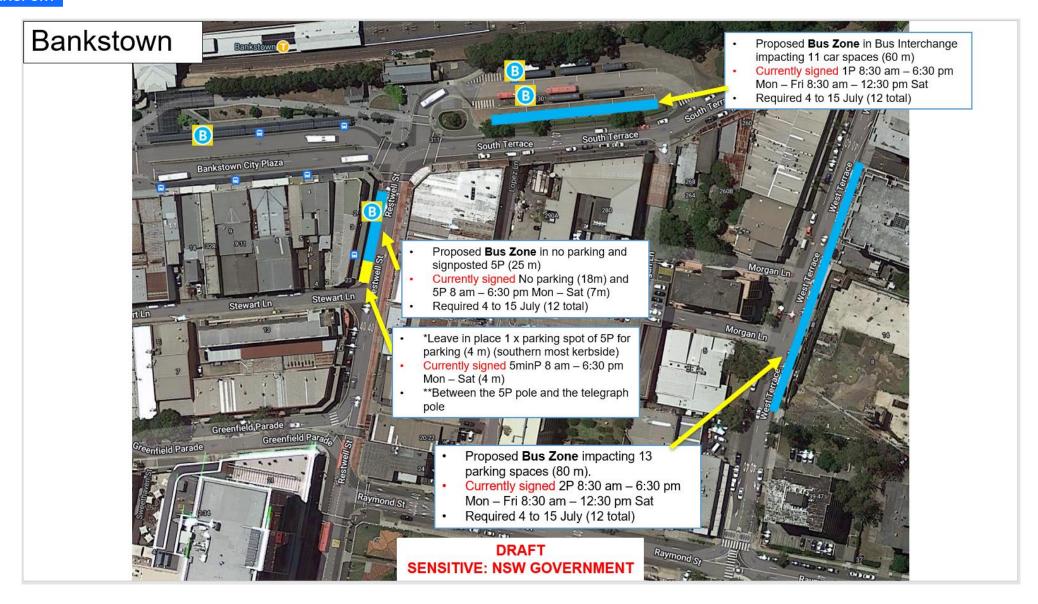
LIMITED STOPS

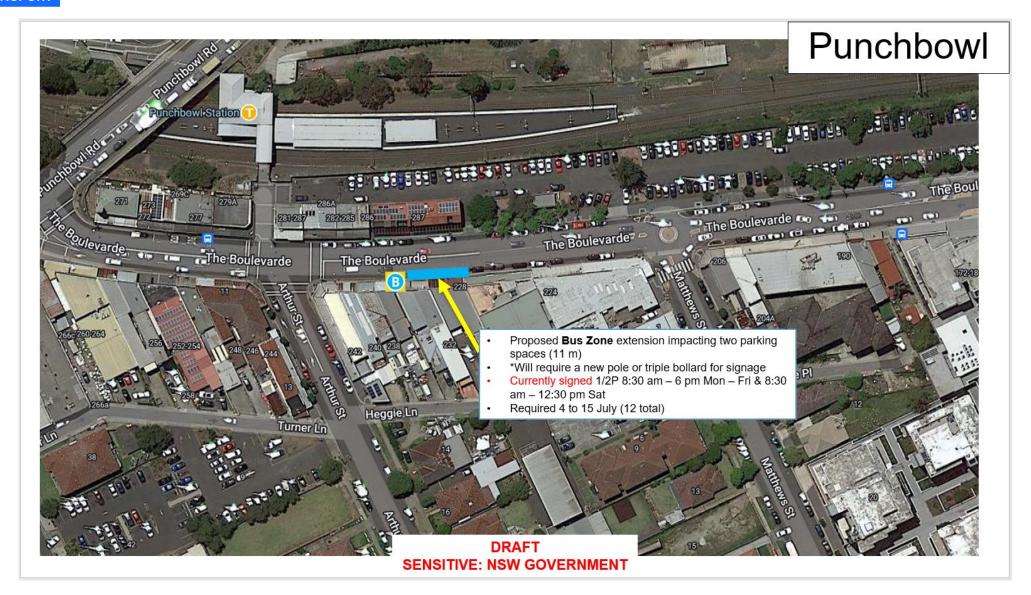
Bus stop

Bus stop #

>>> Route outbound

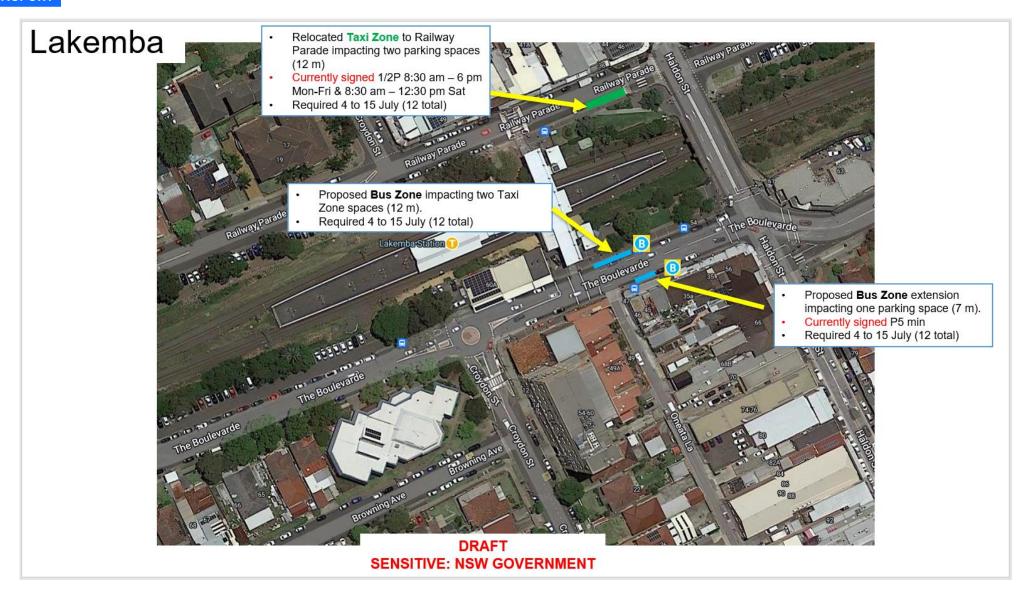


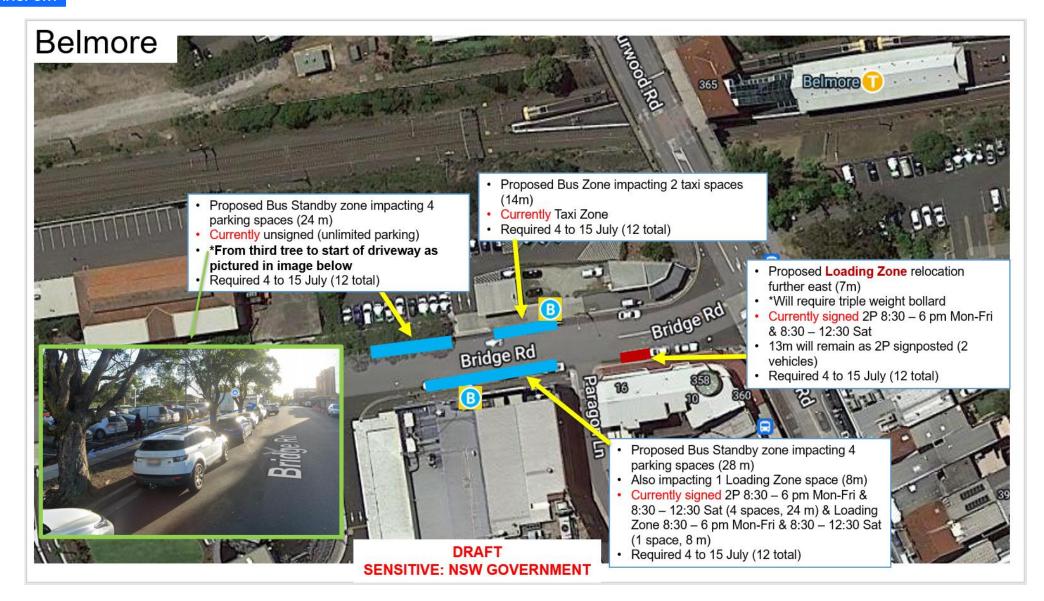

>>> Route citybound



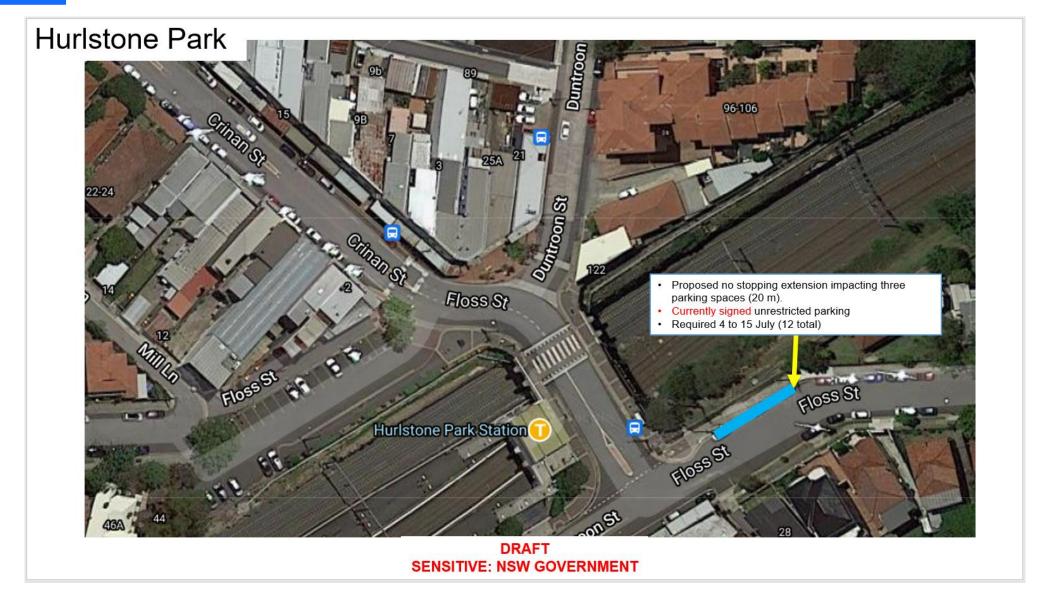
≥≥≥ Route turn around

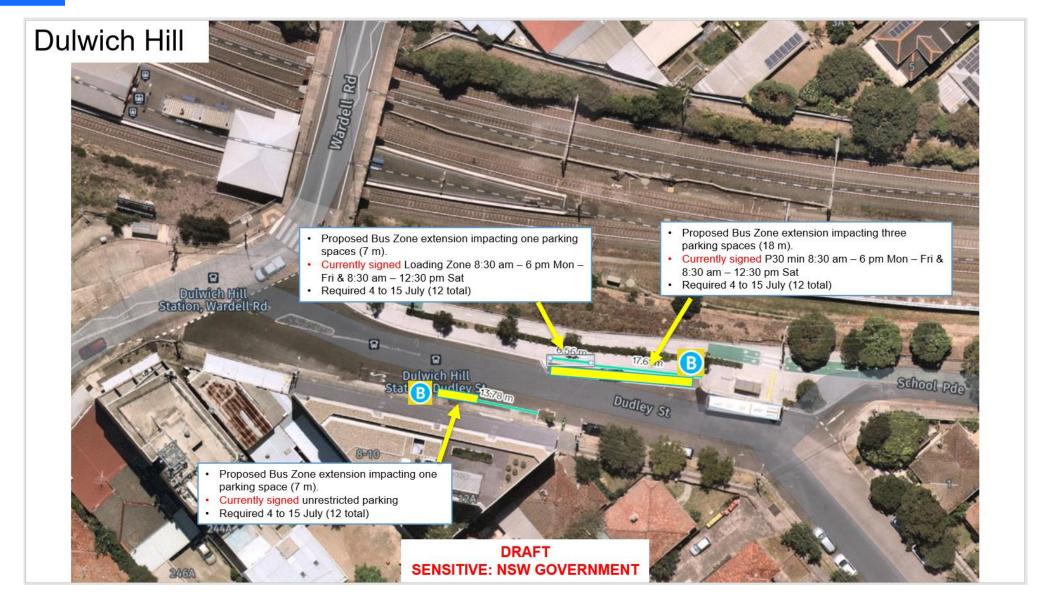
Appendix D - Bus Stop & Layover locations including Temporary Parking Changes





Wiley Park Proposed **Bus Zone** impacting three parking spaces and no stopping zone (32 m total). Currently signed 1/2P 6 am - 7 pm Mon - Fri & 9 am - 6 pm Sat - Sun & Public Hols (18 m) No stopping zone (14 m) *Bus zone to start from telegraph pole to the night ride bus zone indicated in image below Required 4 to 15 July (12 total) The Boulevarde The Boulevarde Proposed Bus Zone extension impacting 3 parking spaces (18 m). Currently signed 1/2P 6 am - 7 pm Mon - Fri & 9 am - 6 pm Sat - Sun & Public Hols. *From start of 1/2P to the speed hump Required 4 to 15 July (12 total)


DRAFT
SENSITIVE: NSW GOVERNMENT



Campsie Proposed Bus Zone impacting fourteen parking spaces (85 m). Currently signed unrestricted parking Required 2 to 15 July (14 total) today forms, then have to Proposed Bus Standby Zone impacting four parking spaces (24 m). Currently signed unrestricted parking THE PROPERTY OF STREET SECTION Required 2 to 15 July (14 total) Proposed Bus Zone impacting Proposed Bus Zone impacting eight three parking spaces (21 m). parking spaces (58 m). Currently unrestricted parking (3 Currently signed No Parking 8:30 -9:30 am & 2:30 - 3:30 PM School Days Extend existing Bus Zone impacting Required 2 to 15 July (14 total) (11 m); unrestricted parking (47 m) three parking spaces (17 m). Required 2 to 15 July (14 total) · Currently signed 1/2P 8:30am -9.30pm Mon - Sun AND Loading Zone 6:30am - 8:30am Mon - Sun · Required 2 to 15 July (14 total) Proposed Bus Zone impacting six parking spaces (40 m). Currently signed No Parking 8:30 -9:30 am & 2:30 - 3:30 PM School Days Required 2 to 15 July (14 total) DRAFT SENSITIVE: NSW GOVERNMENT

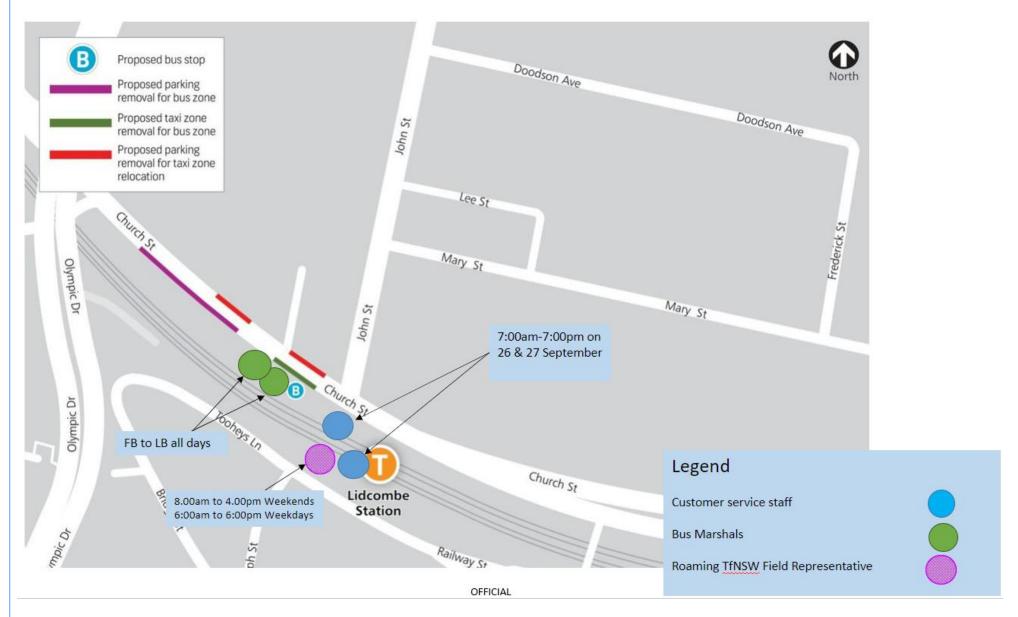
Marrickville 346B · Proposed Bus Zone extension impacting one parking space (7 m). Currently signed 1P 8:30 am – 6 pm Triple based weight bollard will be required as per Required 4 to 15 July (12 total) **DRAFT SENSITIVE: NSW GOVERNMENT**

Appendix E – Stakeholder Consultation List

Engagement and Communications schedule – Sydenham to Bankstown Temporary Transport Plan October 2022 (TTP)

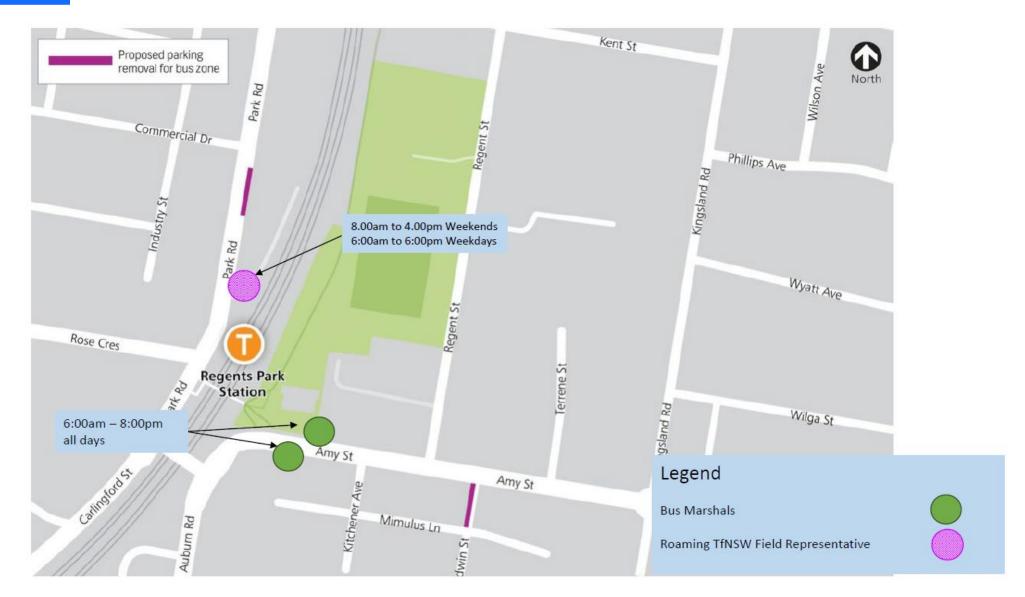
Timing	Stakeholder group	Approach	Tool
6 weeks out	Minister's Office (MO)	 Brief MO on TTP (train plan, bus plan and high level customer communications strategy) 	• Email
6 weeks out	Local CouncilsCanterbury BankstownInner WestCumberland	 Initial briefing on TTP and proposed parking changes 	Slide pack
	Local CouncilsCity of Sydney	Initial briefing on TTP and proposed parking changes	• Email
6 weeks out	Residents and businesses	Media release inviting community to have their say on parking changes	Media release
6 weeks out	Residents and local business within the LGAs of: Canterbury Bankstown Inner West Cumberland	Raise awareness and collate feedback on the proposed kerbside changes	 Letter box drop notification Online website Collate feedback, and prepare Traffic Committee submissions
3 weeks out	Sydney Airport including Airlines	Provide stakeholders with information about the TTP program	Briefing – slide pack

			 Provide copies of the brochure at later date Provide content for distribution to travellers via established airport and airline channels at later date
6 weeks out	Minister's Office (MO)	 Email MO proposed engagement & marketing plan 	Powerpoint Pack
6 weeks out	Accessible Transport Advisory Committee (ATAC)	 Provide stakeholders with Accessible information regarding TTP Share briefing pack with ATAC forum members 	 Briefing pack via Sean Webber Provide copies of the brochure (accessible copies)
4 weeks out	Emergency Services	 Provide stakeholders with Accessible information regarding TTP 	Powerpoint presentation
4 weeks out	Point 2 Point industry (Inc. NSW Taxi Council, Uber, Ola etc.)	 Raise awareness of the proposed temporary kerbside changes impacting taxi ranks at Lakemba and Belmore Stations Present at P2P forum 	 Present and P2P forum Forward copies of the brochure Email contacts with the taxi changes Signage for taxi zone impacts
4 weeks out	Residents and local businesses near Central Station	 Provide businesses & residents an overview of parking changes (3 days only) 	Letterbox drop
4 weeks out	Customers and community	Media release to raise awarenessShare proposed bus routes	Media releaseWebsite update (MySydney)Customer brochure


4 weeks out	 MP for Summer Hill MP for Canterbury MP for Lakemba MP for Bankstown 	 Provide stakeholders with information about the TTP program Offer a briefing – Minister's Office to confirm Overview of the engagement undertaken with local businesses for kerbside changes 	 Slide pack (if briefing required) Email Customer brochure
4 weeks out	 Mayor for Bankstown Mayor for Inner West	 Provide stakeholders with further information about the TTP program Offer a briefing - Minister's Office to confirm (for Mayor/councillor briefings) Overview of the engagement undertaken with local businesses for kerbside changes 	 Slide pack (if briefing required) Email Customer brochure
4 weeks out	 Business Associations Canterbury Bankstown Chamber of Commerce Belmore Shopkeepers Association Australia Arab Business Council Marrickville Business Association Marrickville Chamber of Commerce Dulwich Hill Urban Centre Committee 	 Provide stakeholders with information about the TTP program Overview of the engagement undertaken with local businesses for kerbside changes 	 Send emails and offer briefings Briefing – slide pack Provide copies of the brochure (translated) Provide content for distribution to members
4 weeks out	HealthNSW HealthBankstown HospitalCanterbury Hospital	Provide stakeholders with information about the TTP program	 Send emails and offer briefings Briefing – slide pack Provide copies of translated brochures

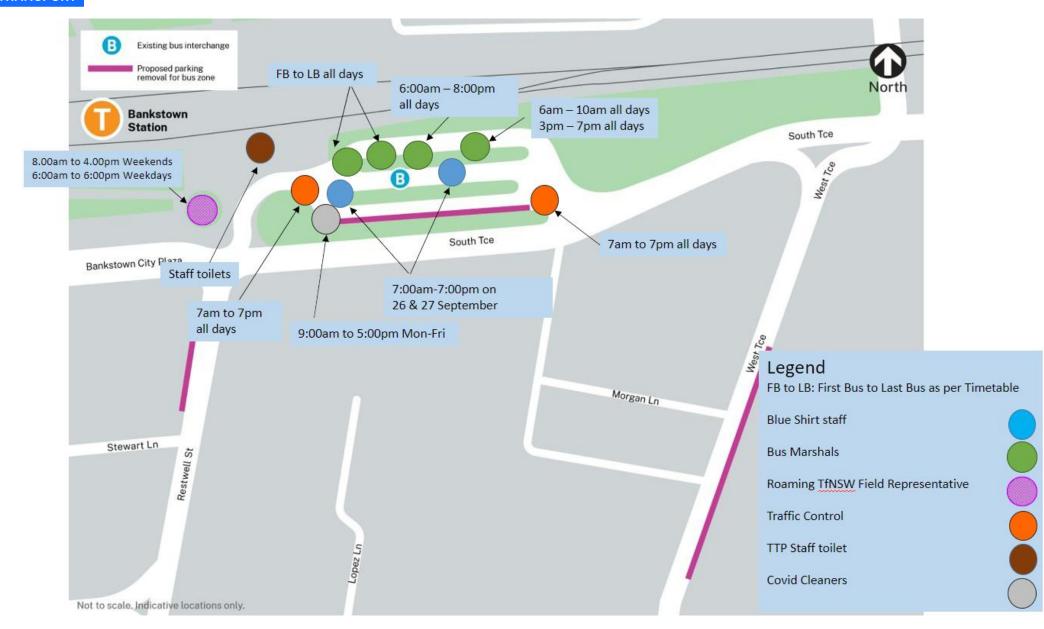
	Medical Centres		Provide content for distribution to members
4 weeks out	Education (Western Sydney University, Sydney University, University of NSW, Macquarie University, Wollongong University, and TAFE Bankstown, Padstow, Campsie, Petersham, Ultimo)	Provide stakeholders with information about the TTP program to ensure students and staff are informed of the changes.	 Send email with a copy of the customer brochure Prepare content for Uni to distribute
4 weeks out	Event organisers	 Provide stakeholders with information about the TTP program Share information with event organisers to ensure getting to and from events is communicated to event goers 	 Send emails Provide copies of the brochure Coordinate with TMC to distribute, and advise stakeholders using existing communications channels
4 weeks out	Culturally and Linguistic Diverse Communities Ethnic Communities' Council of NSW Bankstown Multicultural Youth Services Workers with Youth Network The Multicultural Network Islamic Radio Network	Provide stakeholders with information about the TTP program	 Send emails Provide copies of the brochure translated brochures Provide content for distribution members
4 weeks out	Shopping Centres	 Provide stakeholders with information about the TTP program 	Send emailsProvide copies of the brochure

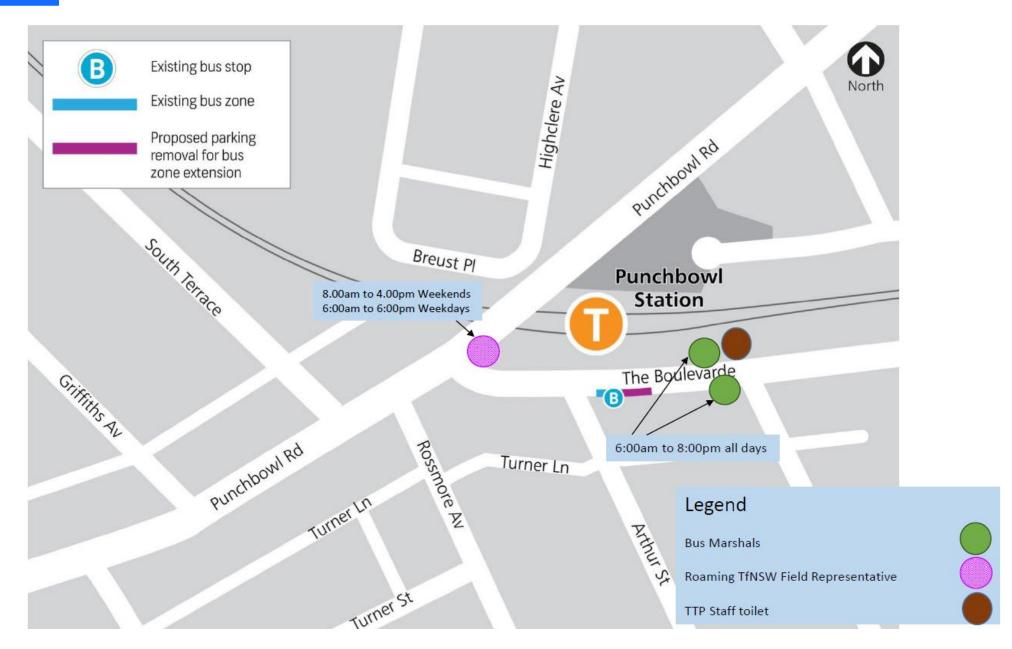

	Bankstown CentroRoselands Centro		 Provide content for distribution to staff and customers
4 weeks out	 Hotels Travelodge Hotel Bankstown Gardenview Hotel Rydges Bankstown Cambridge Lodge Campsie Hotel Station House Hotel Oasis on Beamish Wiley Park Hotel Lakemba Hotel 	Provide stakeholders with information about the TTP program	 Send emails Provide copies of the brochure Provide content for distribution to staff and customers
4 weeks out	Clubs and sporting facilities Bankstown RSL Club Bankstown Sports Club Bankstown - Canterbury Bull Dogs	Provide stakeholders with information about the TTP program	 Send emails Provide copies of the brochure Provide content for distribution to staff and customers
4 weeks out	Places of Worship (refer to stakeholder list)	Provide stakeholders with information about the TTP program	 Send emails Provide copies of the brochure Provide content for distribution to staff and customers
4 weeks out	Aged care facilities (refer to stakeholder list)	Provide stakeholders with information about the TTP program	 Send emails Provide copies of the brochure Provide content for distribution to staff and customers


4 weeks out	Community Centres (via council community services) Bankstown Community Services Centre Bankstown Senior Citizens' Centre	Provide stakeholders with information about the TTP program	 Send emails Provide copies of the brochure Provide content for distribution to staff and customers
4 weeks out	Corporate audience	 Provide stakeholders with information about the TTP program 	 Send newsletter (TDM Newsflash) Provide copies of the brochure Provide content for distribution to staff and customers
2 weeks out	Customers and local residents	 Customer communication marketing campaign is live Proactive local media commences 	 Transport Info news story Trip Planner live Social posts Print ads Station posters Announcements Trackwork notifications Sydney Metro construction notification (TBC date) Street teams at stations to raise awareness prior to the shutdown Media release Hard copy brochures

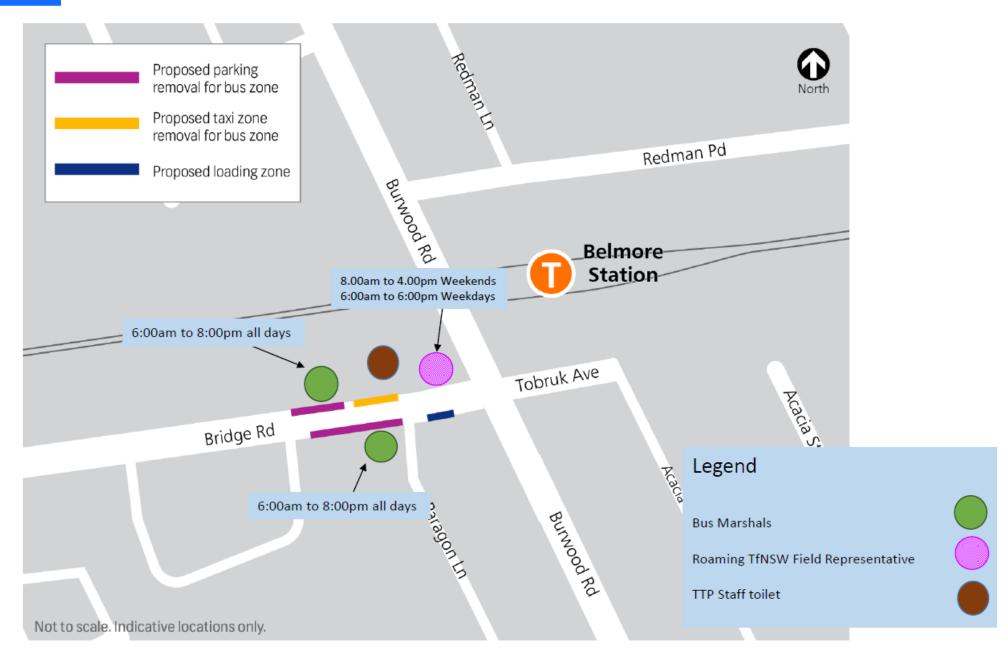
Appendix F - Customer Information Staffing Locations

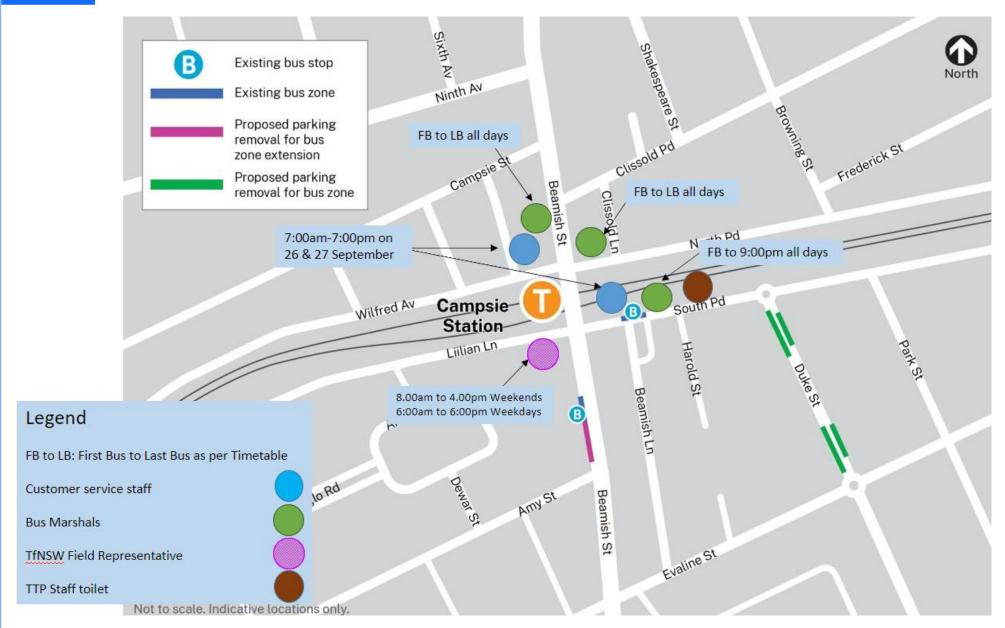
Berala Station

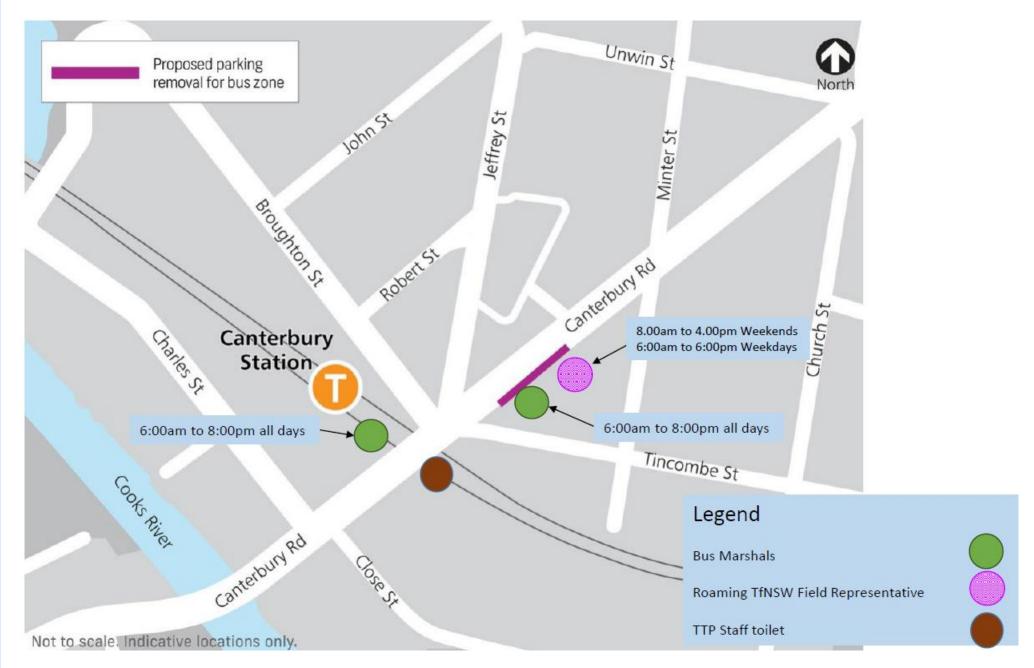


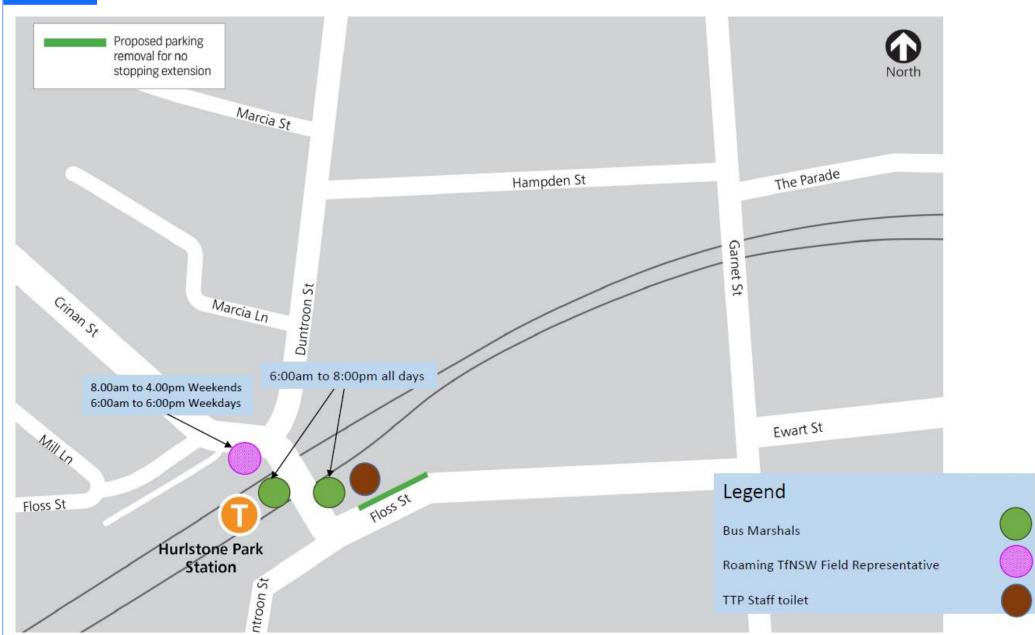


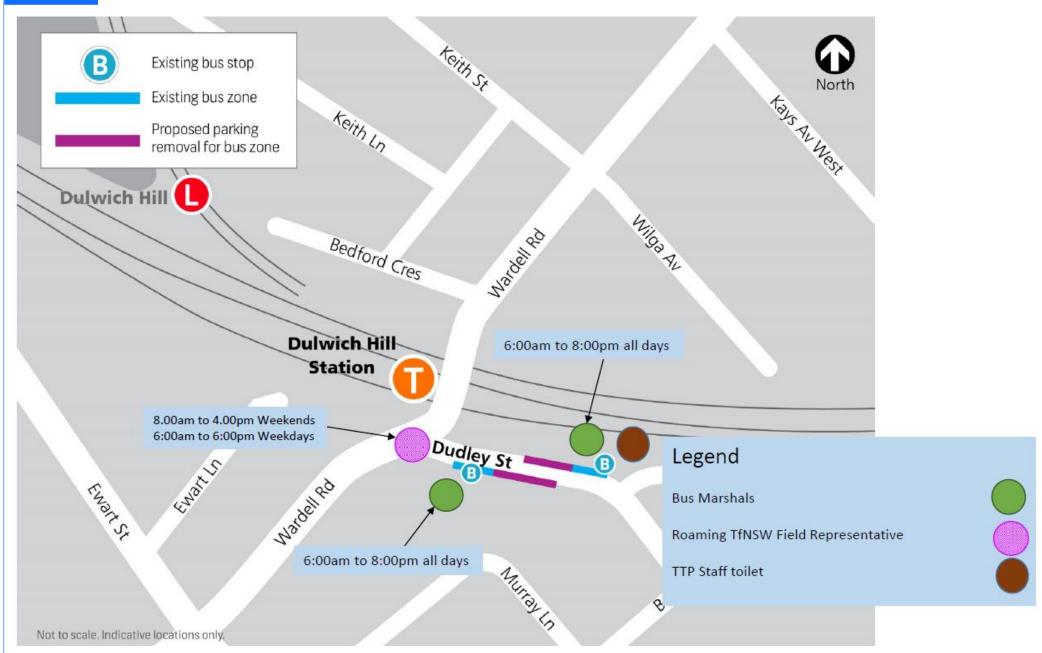
Birrong Station

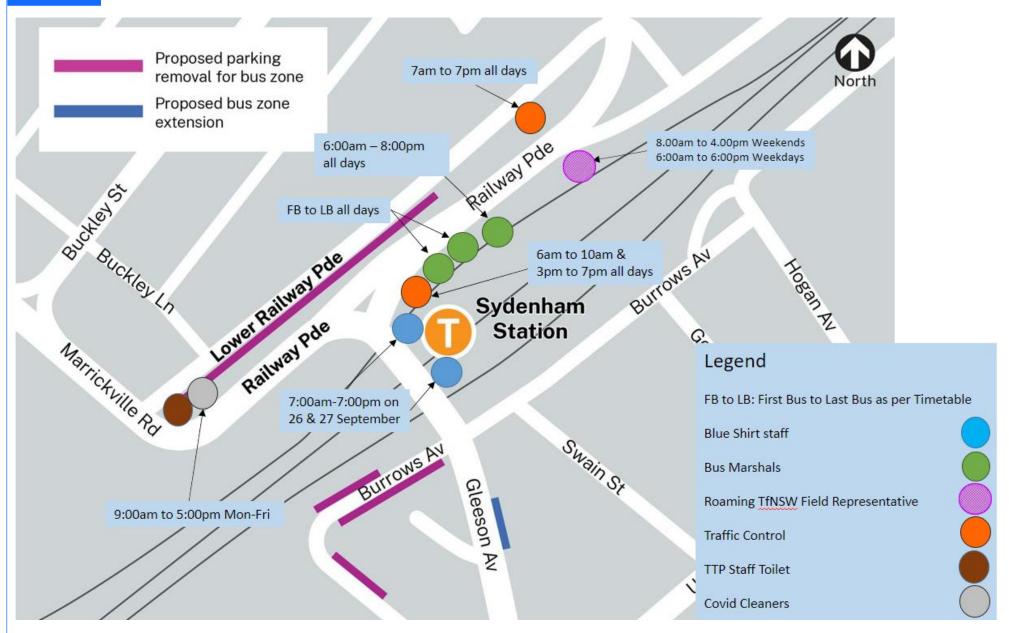












© Transport for New South Wales Users are welcome to copy, reproduce and distribute the information contained in this report for non-commercial purposes only, provided acknowledgement is given to Transport for NSW as the source.

Appendix D – Community Consultation Reports

Community Consultation Report

Sydenham to Bankstown Temporary Transport Plan – Proposed temporary kerbside changes

Bankstown, Punchbowl, Wiley Park, Lakemba, Belmore, Campsie, Canterbury, Hurlstone Park stations –

Canterbury Bankstown Council

22 August 2022

transport.nsw.gov.au

Table of Contents

Introduction2
Purpose of this report
Proposed temporary kerbside changes2
Bankstown2
Punchbowl2
Wiley Park3
Lakemba3
Belmore3
Campsie3
Canterbury2
Hurlstone Park2
Community Consultation5
Consultation feedback received6
Consultation outcomes
Community Information Campaign
Appendix A – Community notifications for temporary kerbside changes
Appendix B – Distribution tracking maps12
Appendix C – Temporary Transport Plan project web page

Introduction

Rail upgrade work is proposed to take place between Sydenham and Bankstown stations from Saturday 24 September 2022 to Sunday 9 October 2022 and from Monday 26 December 2022 to Thursday 12 January 2023. This work has been planned to take place in the September and December/January school holidays when there are fewer customers on the rail network.

To keep customers moving, frequent buses will replace trains during this time. To accommodate these additional buses and ensure minimal disruption to traffic, some temporary changes to parking are proposed around stations between Sydenham and Bankstown as well as Lidcombe.

Purpose of this report

This report provides an overview of community consultation undertaken for temporary kerbside changes around Bankstown, Punchbowl, Wiley Park, Lakemba, Belmore, Campsie, Canterbury and Hurlstone Park stations which are proposed to support the Sydenham to Bankstown Temporary Transport Plan.

A summary of the feedback received is provided along with any changes that have been made to the Plan in response to feedback,

Proposed temporary kerbside changes

Representatives from the Temporary Transport Plan project team held a teleconference with officers from Canterbury Bankstown Council on 29 July 2022, to provide a briefing on the Sydenham to Bankstown Temporary Transport Plans. This included information on the operation of buses to support customers during the closure of the T3 line between Sydenham to Bankstown in the September and December/January school holidays.

Temporary kerbside changes near Bankstown, Punchbowl, Wiley Park, Lakemba, Belmore, Campsie, Canterbury and Hurlstone Park stations were proposed to support the bus operation and initial feedback was sought.

The following kerbside changes were proposed to local residents and businesses:

Bankstown

- Bus Zone extension within the Bankstown Station bus interchange utilising 11 parking spaces (60 metres) currently signed 1-hour between 8.30am and 6.30pm, Monday to Fridays and between 8.30am and 12.30pm on Saturday.
- Bus Zone on West Terrace, eastern side, utilising 13 parking spaces (80 metres) currently signed 2-hour parking between 8.30am and 6.30pm, Monday to Fridays and between 8.30am and 12.30pm on Saturdays.
- Bus Zone on Restwell Street, western side, utilising 25 metres of total space, currently signed no parking zone (18 metres) and 5 minute parking 8.00am to 6.30pm Monday to Friday (7 metres). One space for 5 minute parking will remain in place at the southern end near Stewart Lane.

Punchbowl

• The Boulevarde, between Matthews Street and Arthur Street, southern side, utilising two parking spaces (11 metres) currently signed ½ (half hour) parking between 8.30am and 6pm, Monday to Friday and between 8.30am and 12.30pm on Saturdays.

Wiley Park

- Create a bus zone on The Boulevarde, northern side, utilising three parking spaces (32 metres) currently signed ½P (half hour parking) between 6am and 7pm, Monday to Friday, and between 9am and 6pm Saturday, Sunday and Public Holidays.
- Extend the existing bus zone on The Boulevarde, southern side, utilising three parking spaces (18 metres) currently signed ½P (half hour parking) between 6am and 7pm, Monday to Friday, and between 9am and 6pm Saturday, Sunday and Public Holidays.

Lakemba

- Extend the bus zone on the southern side of The Boulevarde, utilising one 5-minute parking space (7 metres).
- Create a bus zone of the northern side of The Boulevarde, utilising two taxi zone spaces (12 metres). Taxi zone will be relocated to Railway Parade;
- Relocate the taxi zone from The Boulevarde to the southern side of Railway Parade, utilising two parking spaces currently signed ½ (half hour) parking between 8.30am and 6pm Monday to Friday and 8.30am to 12.30pm Saturday.

Belmore

- Create a bus standby zone on the northern side of Bridge Road utilising four parking spaces (20 metres) of currently signed unrestricted parking, opposite the leagues club.
- Create a new bus zone on the northern side of Bridge Road by removing two taxi spaces (14 metres).
- Create a new bus zone on the southern side of Bridge Road utilising:
 - Four parking spaces (24 metres) currently signed 2-hour parking between 8.30am and 6pm, Monday to Friday, and 8.30am and 12.30pm, Saturday.
 - One loading zone space (6 metres) between 8.30am and 6pm, Monday to Friday, and between 8.30am and 12.30pm, Saturday.
- Relocate one loading zone space further east on the southern side of Bridge Road between Paragon Lane and Burwood Road, utilising one parking space (7 metres) of 2hour parking between 8.30am and 6pm, Monday to Friday, and between 8.30am and 12.30pm, Saturday.

Campsie

Beamish Street

- Extend the existing bus zone on Beamish Street western side (near Amy Street) utilising three parking spaces (17 metres) currently signed:
 - \circ Two spaces of $\frac{1}{2}$ (half hour) parking between 8.30am and 9.30pm, Monday to Sunday.
 - One loading zone space between 6.30am and 8.30pm, Monday to Sunday.

Duke Street

 Create two bus zones on the eastern side of Duke Street – one zone near South Parade utilising four parking spaces (24 metres) of unrestricted parking, the other near Evaline Street, utilising three parking spaces (21 metres) of unrestricted parking

- Create a bus zone on the western side of Duke Street near South Parade utilising eight parking spaces (58 metres) currently signed No Parking between 8.30am and 9.30am and between 2.30pm and 3.30pm on School Days (11 metres) and unrestricted parking (47 metres)
- Create a bus zone on the western side of Duke Street near Evaline Street, utilising six parking spaces (40 metres) currently signed No Parking 8.30am and 9:30am, and 2:30pm and 3:30pm on School Days.

Canterbury

• Create a bus zone on Canterbury Road southern side, near Tincombe Street, utilising nine parking spaces (56 metres) of a clearway zone between 6am and 7pm Monday to Friday and between 9am and 6pm on Saturday, Sunday and Public Holidays.

Hurlstone Park

 Extend the no stopping zone on the northern side of Floss Street utilising three parking spaces (20 metres) of unrestricted parking.

The proposed temporary parking changes will allow for the safe operation of buses and will only be in place during these weeks.

Community Consultation

Community consultation on the proposed temporary parking changes in Bankstown, Punchbowl, Wiley Park, Lakemba, Belmore, Campsie, Canterbury and Hurlstone Park was undertaken for a two week period from Monday 8 August to Friday 19 August 2022.

Community notifications were delivered to residents and businesses by a professional distribution company operating under a COVID Safe Plan.

The objective of the consultation was to raise awareness of the proposed temporary parking changes needed to operate additional buses for the planned closure of the T3 Bankstown Line between Sydenham and Bankstown.

Local businesses and residents were asked to provide their feedback to help the project team refine bus operations in and around station precincts.

The consultation program consisted of the following activities:

- Letter box drop of 6173 notifications to businesses and residents within a 200 metre radius of Bankstown, Punchbowl, Wiley Park, Lakemba, Belmore, Campsie, Canterbury and Hurlstone Park stations
- A 24/7 phone number 1800 131 786 to receive feedback, answer any questions and provide the community with more information
- Project email address <u>TTP@transport.nsw.gov.au</u> to receive feedback, answer any questions and provide the community with more information
- A TfNSW project web page was created to provide more information, digital copies of the notifications and information about how to provide feedback.

Copies of the community consultation materials are available in the Appendices.

Consultation feedback received

Station precinct	Community feedback received	TfNSW response
Bankstown	Nil received	Temporary kerbside changes for the Sep and Dec/Jan school holiday periods are the same as the previous TTP in July 22 with no reported issues.
Punchbowl	Nil received	Temporary kerbside changes for the Sep and Dec/Jan school holiday periods are the same as the previous TTP in July 22 with no reported issues.
Wiley Park	Nil received	Temporary kerbside changes for the Sep and Dec/Jan school holiday periods are the same as the previous TTP in July 22 with no reported issues.
Lakemba	Nil received	Temporary kerbside changes for the Sep and Dec/Jan school holiday periods are the same as the previous TTP in July 22 with no reported issues.
Belmore	Nil received	Temporary kerbside changes for the Sep and Dec/Jan school holiday periods are the same as the previous TTP in July 22 with no reported issues.
Campsie	Nil received	Temporary kerbside changes for the Sep and Dec/Jan school holiday period are the same as the previous TTP in July 22 with no reported issues.
Canterbury	Nil received	Temporary kerbside changes for the Sep and Dec/Jan school holiday periods are the same as the previous TTP in July 22 with no reported issues.
Hurlstone Park	Nil received	Temporary kerbside changes for the Sep and Dec/Jan school holiday periods are the same as the previous TTP in July 22 with no reported issues.

Consultation outcomes

TfNSW has prepared submissions to local councils and their traffic committees for the Sydenham to Bankstown Temporary Transport Plan. As part of these submissions, community consultation has been undertaken with local residents and businesses in proximity to the bus zones around stations on the proposed temporary parking changes.

There were no submissions received from the community on the proposed temporary parking changes during the consultation period of 8 August to Friday 19 August 2022.

This was consistent with the previous TTP consultation period in May 2022. Surveying of businesses at that time, found a high awareness of the Sydenham to Bankstown TTP project and the temporary kerbside changes to facilitate bus operations during the school holiday periods.

Based on no feedback, objections or issues raised by local residents and businesses on the temporary parking changes, no further changes to the temporary parking plans are proposed.

Community Information Campaign

The Temporary Transport Plan will be supported with an extensive Community Information Campaign which includes:

- Multilingual communications collateral and advertising in relevant channels
- Geo-targeted social and digital campaign
- Wayfinding Strategy with posters and maps to direct customers
- Customer planning information uploaded to TfNSW's Trip Planner
- Sydney Trains customer announcements on platforms and trains
- Customer information personnel located at all station locations to assist customers during the TTP operations.

Appendix A - Community notifications for temporary kerbside changes

Community notifications were distributed via letter box drop. Examples of the notifications are provided below.

Bankstown - 734 community notifications distributed

Punchbowl - 627 community notifications distributed

Wiley Park - 553 community notifications distributed

Map of the proposed temporary kerbside change: Transport for NSW NSW • **(3)** Existing bus stop Existing bus zone **Proposed Temporary Parking** Proposed parking removal for bus zone extension T3 Bankstown Line upgrade work – Wiley Park Station What is happening? Rail upgrade work will take place between Sydenham and Bankstown from Saturday 24 September to Sunday 9 October 2022 and from Monday 26 December 2022 to Sunday 15 January 2023. This work has been planned to take place in the October and December/Januar school holidays when there are fewer customers on the rail network. To keep customers moving, frequent buses will replace train during these times. To accommodate the additional buses and ensure minimal disruption to traffic, some temporary parking changes are proposed around Wiley Park Station. What do I need to know? From 2am Saturday 24 September to 2am Monday 10 October 2022, and from 2am Monday 26 December 2022 to 2am Monday 16 January 2023, the following temporary kerbside changes are proposed: Create a bus zone on The Boulevarde, northern side, utilising three parking spaces (32 metres) currently signed ½P (half hour parking) between 6am and 7pm, Monday to Friday, and between 9am and 6pm Saturday, Sunday and Public Holidays. Extend the existing bus zone on The Boulevarde, southern side, utilising three parking spaces (18 metres) currently signed ½P (half hour parking) between 6am and 7pm, Monday to Friday, and between 9am and 6pm Saturday, Sunday and Public Holidays. nplified Chinese 分文件自含你所在地区公共文德工程项目的屬要信息。如果你需要传译服务,请敬电翻译与传译服务机构。电话 131 0. 霉素他们为你被强交通工程部(Transport for NSW)。电话是 1800 171 386。传译员会为你戴翻译。 Traditional Chinese 運动文件包含亦作在地區公共交通工程項目的重要信息,加票价需要傳導服務,換較電影調與再導聯股務機構,電話 131 450 素素检查剂类的基金类型工程新Transport for NSW) 電話器 1800173 386。德興基金為份數網第一 The proposed temporary parking changes will allow for the safe operation of buses and will only be in place during these times. Please see the map on the back of this notification for more information about the temporary parking changes. Provide your feedback abie توپر نام بوچ الميتان بايران بور شرخانه و يا اواچ بخرك از ، بكنتوليد بولد رايان لؤران وير البران خابران بر قوشران خريجيت امرع 2008 (17 1000 فر يام ترامير شراس بون يف تالحياريان خاجميد اراميتان با بدير ايبلخار (35 45 فرد ياع توخيار تويشفران Transport for NSW welcomes community feedback on the proposed changes to help refine bus operations in and around the station precinct. ase provide your feedback by 5pm 19 August 2022 via the following channels: Email: TTPComms@transport.nsw.gov.au Phone: 1800 171 386 For more information: mysydnov psy gov ion: mysydney.nsw.gov.au/sydenhamtobankstown

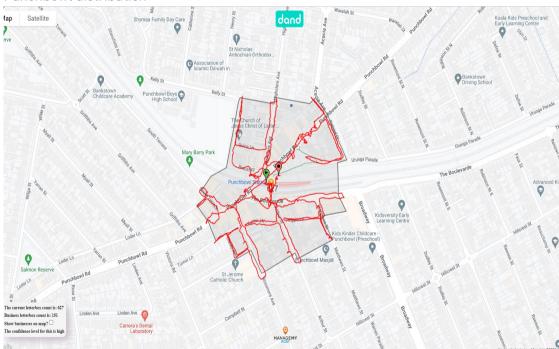
Lakemba - 718 community notifications distributed

Belmore - 446 community notifications distributed

Campsie - 910 community notifications distributed

Canterbury - 1706 community notifications distributed

Map of the proposed temporary kerbside change Transport for NSW NSW 0 **Proposed Temporary Parking** Changes T3 Bankstown Line upgrade work - Canterbury Station What is happening? What is nappening? Rail upgrade work will take place between Sydenham and Bankstown from Saturday 24 to September Obecember 2022 and from Monday 26 December 2022 to Sunday 15 January 2023. This work fosbeen planned to take place in the October and December? January 2023. This work when there are fewer extenders on the rail network. To keep custom broken some strength of the place trains during these times. To accommodate the additional buses and ensure minimal disruption to traffic, a temporary parking change is proposed around Canterbury Station. What do I need to know? From Zam Saturday 24 September to 2am Monday 10 October 2022, and from 2am Monday 26 December 2022 to 2am Monday 16 January 2023, the following temporary kerbside change is proposed: Create a bus zone on Canterbury Road southern side, near Tincombe Street, utilising nine parking spaces (56 metres) of a clearway zone between 6am and 7pm Monday to Friday and between 9am and 6pm on Saturday, Sunday and Public Holidays. The proposed temporary parking change will allow for the safe operation of buses and will only be in place during these times. Please see the map on the back of this notification for more information about the temporary parking change. Simplified Chinese 这份文件包含物所在地区公共交通工程项目的重要信息。如果你需要传译服务,请敦电翻译与传译服务机构,电话 131 450、要求他们为你接通交通工程部(Transport for NSW), 电话是 1800 171 386。 传译员会为你做翻译。 Traditional Chinese 通应文件包含亦你在地區企共交通工程項目的重要信息。如果你需要構算服務,購款電額提昇模類服務機構,電話 131 450 ,要求他們為你接通交通工程都(Transport for NSW),電話是 1800 171 386。傳譯資金為你搬翻 Transport for NSW welcomes community feedback on the proposed change to help refine bus operations in and around the station precinct. ambie: هي خان عيب الميتال الإيران بورند نامج برا الإيب مترك الا رفحتهان بهد رايا الؤرنا عير الربن تأنواني الإيشرال شريعيت من ع 2008 (2017 الورانية شواس وين يف شاهماريا خاجميه المعرشين الإيمار البلطار 2011 450 يقر بان عيمانيار ويضفيا Please provide your feedback by 5pm 19 August 2022 via the following channels: Email: TTPComms@transport.nsw.gov.au Phone: 1800 171 386 For more information: mysydney.nsw.gov tion: mysydney.nsw.gov.au/sydenhamtobankstown


Hurlstone Park - 479 community notifications distributed Map of the proposed temporary kerbside change Transport for NSW NSW • **Proposed Temporary Parking** T3 Bankstown Line upgrade work - Hurlstone Park Station What is happening? WHAT IS TREPPENING? Rail upgrade work will take place between Sydenham and Bankstown from Saturday 24 September to Sunday 9 October 2022 and from Monday 26 December 2022 to Sunday 15 January 2023. This work has been planned to take place in the October and December/ January school holidays when there are fewer customers on the rail network. To keep customers moving, frequent buses will replace trains during these times. To accommodate the additional buses and ensure minimal disruption to traffic, a temporary parking change is proposed around Hurlstone Park Station. What do I need to know? From 2am Saturday 24 September to 2am Monday 10 October 2022, and from 2am Monday 26 December 2022 to 2am Monday 16 January 2023, the following temporary kerbside Simplified Chinese 这份文件包含你新在地区公共交通工程项目的重要信息。如果你需要传译服务,请敦电翻译与传译服务机构,电话 131 450、要求他17为依接德交通工程前(Transport for NSW), 电话是 1800 171 386。 传译员会为你牵翻译。 Extend no stopping on the north side of Floss Street utilising three parking spaces (20 metres) of unrestricted parking. The proposed temporary parking change will allow for the safe operation of buses and will only be in place during these times. Please see the map on the back of this notification for more information about the temporary parking changes. Arabic تورندنا مدیب ایسردایا ، میرند ناموع زیا چاپ میتری از رفتنوش پرد ارتایا تورنا چیز ایرون خامهای و فریشرا شاریست شدی 1906 (1917) و دارخ زادید شوار برون وید نامدرایدا خصریه ایاسیشی را مید ایداختر 2014 وقر دراع میخیار عرضفیال غیر نشاید چرختها بخدهای Provide your feedback Transport for NSW welcomes community feedback on the proposed change to help refine bus operations in and around the station precinct. August 202 Pub No 1 Please provide your feedback by 5pm 19 August 2022 via the following channels: Email: TTPComms@transport.nsw.gov.au Phone: 1800 171 386 For more information: mysydney.nsw.gov.au/sydenhamtobankstown Transport.nsw.gov.au 1 of 2

Appendix B - Distribution tracking maps

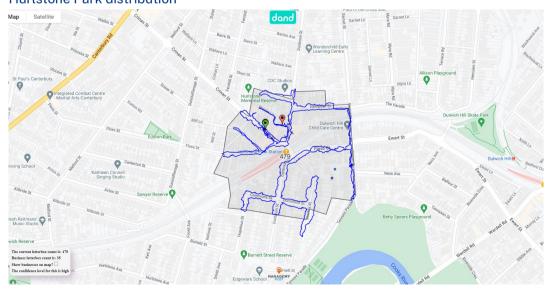

Bankstown distribution

Punchbowl distribution

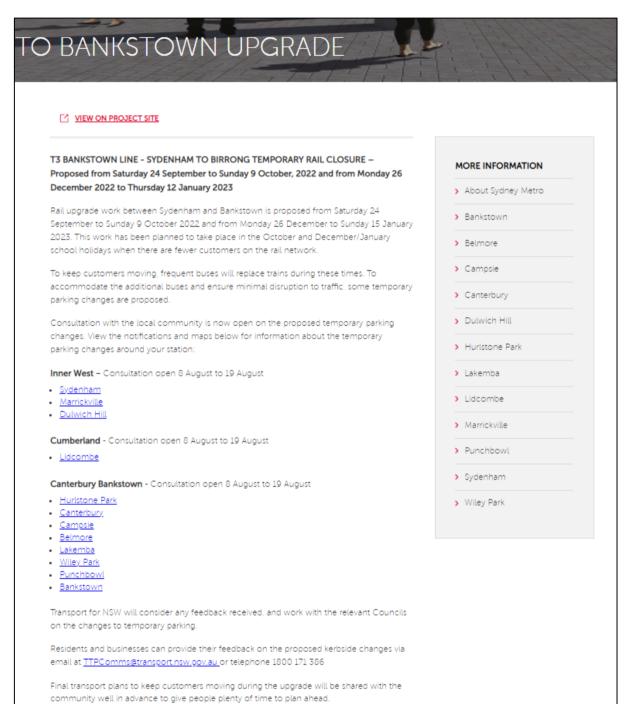
Wiley Park distribution

Lakemba distribution

Belmore distribution


Campsie distribution

Canterbury distribution


Hurlstone Park distribution

Appendix C - Temporary Transport Plan project web page

Community notifications and links for further information were placed online at www.mysydney.nsw.gov.au/SydenhamtoBankstown

Refer to the screenshot below:

© Transport for New South Wales Users are welcome to copy, reproduce and distribute the information contained in this report for non-commercial purposes only, provided acknowledgement is given to Transport for NSW as the source.

Community Consultation Report

Sydenham to Bankstown Temporary Transport Plan – Proposed temporary kerbside changes

Lidcombe station – **Cumberland Council**

22 August 2022

transport.nsw.gov.au

Table of Contents

Introduction	3
Purpose of this report	3
Proposed temporary kerbside changes	3
Lidcombe	3
Community Consultation	4
Consultation feedback received	5
Consultation outcomes	5
Community Information Campaign	5
Appendix A – Community notification for temporary kerbside changes	6
Appendix B – Distribution tracking map	7
Appendix C – Temporary Transport Plan project web page	8

Introduction

Rail upgrade work is proposed to take place between Sydenham and Bankstown stations from Saturday 24 September to Sunday 9 October 2022 and from Monday 26 December 2022 to Thursday 12 January 2023. This work has been planned to take place in the September and December/January school holidays when there are fewer customers on the rail network.

To keep customers moving, Transport for NSW (TfNSW) is implementing a Sydenham to Bankstown Temporary Transport Plan (TTP) where frequent buses will replace trains during this time.

To accommodate these buses and ensure minimal disruption to traffic, some temporary changes to kerbside parking are proposed around stations between Sydenham and Bankstown as well as Lidcombe.

Purpose of this report

This report provides an overview of community consultation undertaken for temporary kerbside changes around Lidcombe station which are proposed to support the Sydenham to Bankstown Temporary Transport Plan.

A summary of the feedback received is provided along with any changes that have been made to the Plan in response to feedback,

Proposed temporary kerbside changes

Temporary kerbside changes near Lidcombe station were proposed to support the bus operation and initial feedback was sought.

The following kerbside changes were proposed to local residents and businesses:

Lidcombe

- Create a bus zone on Church Street, southern side, utilising 28 parking spaces (100 metres) currently 45 degree angled parking and signed 2-hour parking 8.30am to 6pm Monday to Friday and 8.30am to 12.30pm Saturday.
- Create a bus stop on Church Street, southern side, utilising six taxi spaces (45 metres) currently signed taxi zone.
- Relocate the current taxi zone on Church Street to two locations on the opposite side of Church Street (northern side):
 - utilising three parking spaces near John Street currently signed ½ (half hour)
 8.30am to 6pm Monday to Friday and 8.30am to 12.30pm Saturday
 - utilising four parking spaces (24 metres) currently signed as three spaces unrestricted and one space 2-hour parking 8.30am to 6pm Monday to Friday and 8.30am to 12.30pm Saturday.

The proposed temporary parking changes will allow for the safe operation of buses and will only be in place during these two weeks.

Community Consultation

Community consultation on the proposed temporary parking changes in Lidcombe was undertaken for a two week period from Monday 8 August to Friday 15 August 2022.

Community notifications were delivered to residents and businesses by a professional distribution company operating under a COVID Safe Plan.

The objective of the consultation was to raise awareness of the proposed temporary parking changes needed to operate additional buses for the planned closure of the T3 Bankstown Line between Sydenham and Bankstown.

Local businesses and residents were asked to provide their feedback to help the project team refine bus operations in and around the station precinct.

The consultation program consisted of the following activities:

- Letter box drop of 596 notifications to businesses and residents within a 200 metres radius of Lidcombe station
- A 24/7 phone number 1800 131 786 to receive feedback, answer any questions and provide the community with more information
- Project email address <u>TTP@transport.nsw.gov.au</u> to receive feedback, answer any questions and provide the community with more information
- A project web page was created to provide more information, digital copies of the notifications and information about how to provide feedback

Copies of the community consultation materials are available in the Appendices.

Consultation feedback received

Station precinct	Community feedback received	TfNSW response
Lidcombe	Nil received	Temporary kerbside changes for the September and December/January school holiday periods are the same as the previous TTP in July 22 with no reported issues.

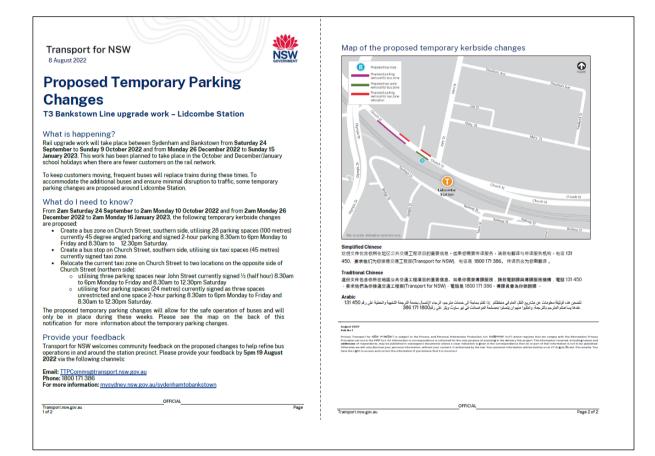
Consultation outcomes

TfNSW has prepared submissions to local councils and their traffic committees for the Sydenham to Bankstown Temporary Transport Plan. As part of these submissions, community consultation has been undertaken with local residents and businesses in proximity to the bus zones around stations on the proposed temporary parking changes.

There were no submissions received from the community on the proposed temporary parking changes in Lidcombe during the consultation period of from Monday 8 August to Friday 19 August 2022.

Based on no feedback, objections or issues raised by local residents and businesses on the temporary parking changes, no further changes to the temporary parking plans are proposed.

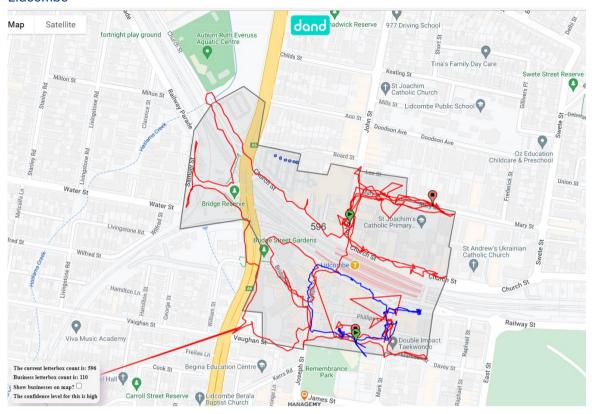
Community Information Campaign


The Temporary Transport Plan will be supported with an extensive Community Information Campaign which includes:

- Multilingual communications collateral and advertising in relevant channels
- Geo-targeted social and digital campaign
- Wayfinding Strategy with posters and maps to direct customers
- Customer planning information uploaded to TfNSW's Trip Planner
- Sydney Trains platform and train customer announcements
- Customer information personnel located at all station locations to assist customers during this time.

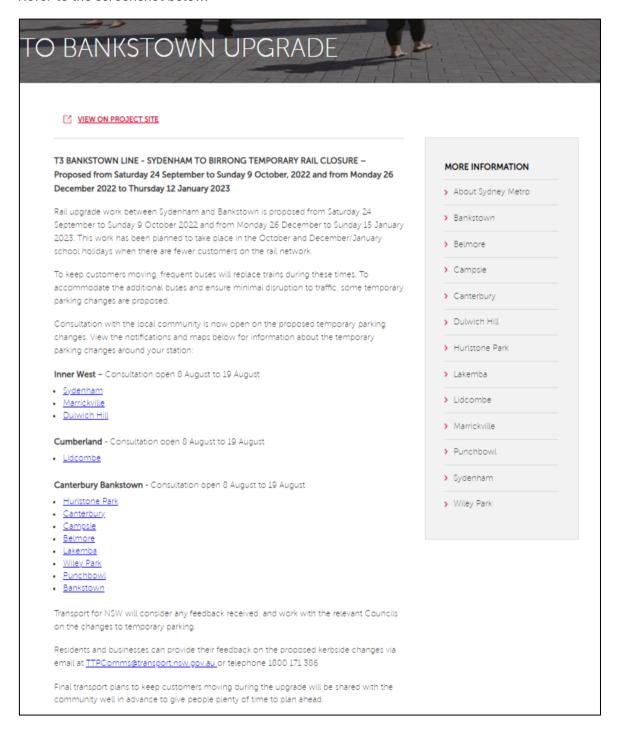
Appendix A – Community notification for temporary kerbside changes

Community notifications were distributed via letter box drop. An example of the notification is provided below.


Lidcombe - 596 community notifications distributed

TRANSPORT

Appendix B - Distribution tracking map


Lidcombe

Appendix C - Temporary Transport Plan project web page

Community notifications and links for further information were placed online at www.mysydney.nsw.gov.au/SydenhamtoBankstown

Refer to the screenshot below:

© Transport for New South Wales Users are welcome to copy, reproduce and distribute the information contained in this report for non-commercial purposes only, provided acknowledgement is given to Transport for NSW as the source.

Community Consultation Report

Sydenham to Bankstown Temporary Transport Plan – Proposed temporary kerbside changes

Dulwich Hill, Marrickville and Sydenham stations – **Inner West Council**

22 August 2022

transport.nsw.gov.au

Table of Contents

Introduction	3
Purpose of this report	3
Proposed temporary kerbside changes	3
Dulwich Hill	3
Marrickville	3
Sydenham	
Community Consultation	4
Consultation feedback received	5
Consultation outcomes	5
Community Information Campaign	5
Appendix A – Community notifications for temporary kerbside changes	6
Appendix B – Notification tracking maps	8
Appendix C – Temporary Transport Plan project web page	9

Introduction

Rail upgrade work is proposed to take place between Sydenham and Bankstown stations from Saturday 24 September to Sunday 9 October 2022 and from Monday 26 December 2022 to Thursday 12 January 2023. This work has been planned to take place in the October and December/January school holidays when there are fewer customers on the rail network.

To keep customers moving, Transport for NSW (TfNSW) is implementing a Sydenham to Bankstown Temporary Transport Plan (TTP) where frequent buses will replace trains during this time.

To accommodate these buses and ensure minimal disruption to traffic, some temporary changes to kerbside parking are proposed around stations between Sydenham and Bankstown as well as Lidcombe and Central.

Purpose of this report

This report provides an overview of community consultation undertaken for temporary kerbside changes around Dulwich Hill, Marrickville and Sydenham stations which were proposed to support the Sydenham to Bankstown Temporary Transport Plans.

A summary of the feedback received is provided along with any changes that have been made to the Plan in response to feedback,

Proposed temporary kerbside changes

Representatives from the Temporary Transport Plan project team notified Inner West Council on the Temporary Transport Plans. This included information on the operation of buses to support customers during the closure of the T3 line between Sydenham to Bankstown in the September and December/January school holidays.

Temporary kerbside changes at Dulwich Hill, Marrickville and Sydenham were proposed to support the bus operation and initial feedback was sought.

The following kerbside changes were proposed to local residents and businesses:

Dulwich Hill

- Extend the bus zone on the northern side of Dudley Street utilising:
 - o One loading zone space (7 metres) currently signed between 8.30am and 6pm, Monday to Friday and between 8.30am and 12.30pm on Saturday.
 - Three parking spaces (18 metres) currently signed as 30 minute parking between 8.30am and 6pm Monday to Friday and between 8.30am and 12.30pm on Saturday.
- Extend the bus zone on the southern side of Dudley Street utilising one parking space (7 metres) currently signed as unrestricted parking.

Marrickville

• Extend the bus zone on the western side of Illawarra Road by utilising one parking space (7 metres) currently signed as 1-hour parking between 8.30am and 6pm.

Sydenham

- Create a bus zone on the southern side of Lower Railway Parade (between Marrickville Road and Sydenham Road) currently 45 degree parking utilising:
 - 46 parking spaces (122 metres) currently signed All-day parking

- 11 parking spaces (32 metres) currently signed 4-hour 8.30am to 6pm, Monday to Friday.
- Create a bus zone on the northern side of Burrows Avenue (prior to Gleeson Avenue) utilising 14 parking spaces (50 metres) currently signed unrestricted parking.
- Create a bus zone on the southern side of Burrows Avenue (prior to Gleeson Avenue) utilising 9 parking spaces (58 metres) currently signed unrestricted parking.
- Create a bus zone on the north-eastern side of Railway Road (prior to Gleeson Avenue) utilising 3 parking spaces (18 metres) currently signed 2-hour parking 8.00am to 10pm, Monday to Friday
- Extend the bus zone on the eastern side of Gleeson Avenue (between Burrows Avenue and Unwins Bridge Road) utilising 2 parking spaces (12 metres) currently signed 1-hour 9.00am to 3.30pm, Monday to Friday.

Community Consultation

Community consultation on the proposed temporary parking changes in Dulwich Hill, Marrickville and Sydenham, was undertaken for a two week period from Monday 8 August to Friday 19 August, 2022.

Community notifications were delivered to residents and businesses by a professional distribution company operating under a COVID Safe Plan.

The objective of the consultation was to raise awareness of the proposed temporary parking changes needed to operate additional buses for the planned closures of the T3 Bankstown Line.

Local businesses and residents were asked to provide their feedback to help the project team refine bus operations in and around station precincts.

The consultation program consisted of the following activities:

- Letter box drop of 2326 notifications to businesses and residents within a 200 metre radius of the three station locations
 - Dulwich Hill 883 notifications
 - Marrickville 1218 notifications
 - Sydenham 225 notifications.
- A 24/7 phone number 1800 131 786 to receive feedback, answer any questions and provide the community with more information
- Project email address <u>TTP@transport.nsw.gov.au</u> to receive feedback, answer any questions and provide the community with more information
- A project web page was created to provide more information, digital copies of the notifications and information about how to provide feedback.

Copies of the community consultation materials are available in the Appendices.

Consultation feedback received

Station precinct	Community feedback received	TfNSW response
Dulwich Hill	1 compliant received in relation to the notification and the Arabic translation for TfNSW's Translator Services which was illegible.	TfNSW contacted the resident and apologised. A formatting error for the notification resulted in the Arabic translation being expanded and illegible. TfNSW has taken steps to ensure this is rectified. Temporary kerbside changes are the same as the previous TTP in July 22 with no reported issues.
Marrickville	Nil received	Temporary kerbside changes are reduced from the previous TTP in July 22 with no reported issues.
Sydenham	Nil received	Temporary kerbside changes are the same as the previous TTP in July 22 with no reported issues.

Consultation outcomes

TfNSW has prepared submissions to local councils and their traffic committees for the Sydenham to Bankstown Temporary Transport Plan. As part of these submissions, community consultation has been undertaken with local residents and businesses in proximity to the bus zones around stations on the proposed temporary parking changes.

There was 1 complaint received in relation to the notification and the Arabic translation for TfNSW's Translator Services. There were no submissions received from the community on the proposed temporary parking changes during the consultation period of between Monday 8 August and Friday 19 August 2022.

Based on no feedback in relation to the proposed kerbside changes raised by local residents and businesses on the temporary parking changes, no further changes to the temporary parking plans are proposed.

Community Information Campaign


The Temporary Transport Plan will be supported with an extensive Community Information Campaign which includes:

- Multilingual communications collateral and advertising in relevant channels
- Geo-targeted social and digital campaign
- Wayfinding Strategy with posters and maps to direct customers
- Customer planning information uploaded to TfNSW's Trip Planner
- Sydney Trains platform and train customer announcements
- Customer information personnel located at all station locations to assist customers during this time.

Appendix A - Community notifications for temporary kerbside changes

Community notifications were distributed via letter box drop. Examples of the notifications are provided below.

Dulwich Hill - 883 community notifications distributed

Marrickville - 1218 community notifications distributed

Sydenham - 219 community notifications distributed

Transport for NSW

Proposed Temporary Parking Changes

T3 Bankstown Line upgrade work - Sydenham Station

What is happening?

Rall upgrade work will take place between Sydenham and Bankstown from Saturday 24
September to Sunday 9 October 2022 and from Monday 26 December 2022 to Sunday 15 January
2023. This work has been planned to take place in the October and December/January school
holidays when there are fewer customers on the rail network.

What do I need to know?

From 2am Saturday 24 September to 2am Monday 10 October 2022 and from 2am Monday 26 December 2022 to 2am Monday 16 January 2023, the following temporary kerbside changes are proposed:

- imber 2022 to 2am monnay to January 2023, the roticoling temporary keroside changes
 roposed.

 Create a buz zone on the southern side of Lower Railway Parade (between Marrickville Road and
 Sydenham Road) currently 45 degree parking utilizing:

 of the parking spaces (122 metres) currently signed 41-day parking

 in parking spaces (122 metres) currently signed 41-day parking

 for a buz zone on the northern side of Burrows Avenue (prior to Gleeson Avenue) utilising 14
 parking spaces (50 metres) currently signed uterstricted parking

 Create a buz zone on the southern side of Burrows Avenue (prior to Gleeson Avenue) utilising 9
 parking spaces (58 metres) currently signed unserticted parking.

 Create a buz zone on the north-eastern side of Railway Road (prior to Gleeson Avenue) utilising 3
 parking spaces (18 metres) currently signed utour parking 80 point to 10pm, Monday to Friday
 Extend the buz zone on the eastern side of Gleeson Avenue (between Burrows Avenue and Unwins
 Bridge Road) utilising 2 parking spaces (12 metres) currently signed 1-hour 9.00am to 3.30pm,
 Monday to Friday.

The proposed temporary parking changes will allow for the safe operation of buses and will only be in place during these weeks. Please see the map on the back of this notification for more information about the temporary parking changes.

Provide your feedback

Transport for NSW welcomes community feedback on the proposed changes to help refine bus operations in and around the station precinct. Please provide your feedback by 5pm 19 August 2022 via the following channels:

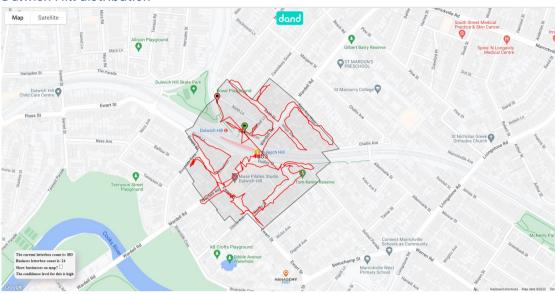
Email: TTPComms@transport.nsw.gov.au Phone: 1800 171 386 For more information: mysydney.nsw.gov.

171 386 prmation: <u>mysydney.nsw.gov.au/sydenhamtobankstown</u>

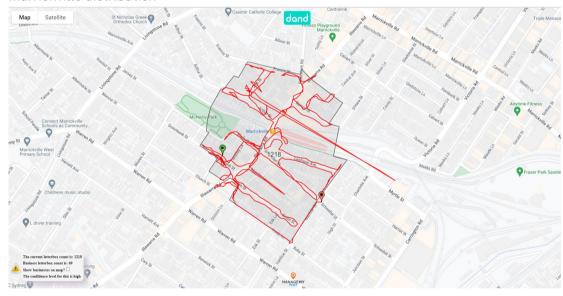
OFFICIAL

Map of the proposed temporary kerbside changes

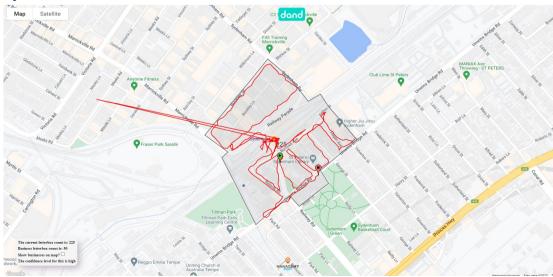
Simplified Chinese 这份文件包含你所在地区公共交通工程项目的重要信息。如果你需要传译服务,请敦电翻译与传译服务机构, 电话 131 450, 要求他们为你接通交通工程部(Transport for NSW), 电话是 1800 171 386。传译员会为你做 翻译。


Traditional Chinese 這份文件包含你所在地區公共交通工程項目的重要信息。如果你需要傳譯服務,請致電翻譯與傳譯服務機構 電話 131 450 . 要求他們為你接通交通工程部(Transport for NSW) . 電話是 1800 171 386。 傳譯員會為你做翻

abic) (پاستيار) داچرل درچردم دندود و ليا تاچپ جنرگ اثار ,گلستوخره و پد داچل لوزرل څهر اثريم راح تابول چو توپيشول ها درپخينت را پرو شواس رون و پد شالحداو يا تاچپ په ارتبارت را بود پار دېليشو (50 31 450 هر واراع توپخترانو توپيشترل انوچ سال ندچپ پنجرشاب دېرد شيا چلادع بري افزرع (350 71 850 150 نور واراع)

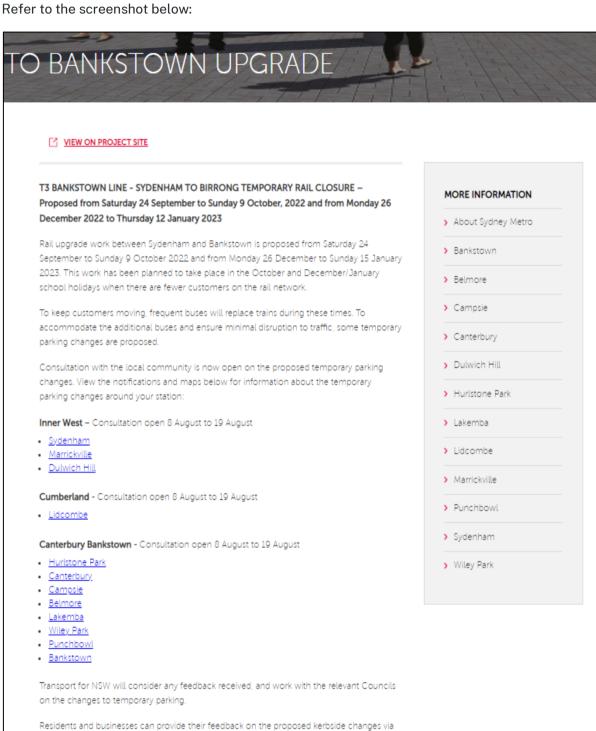

Transport.nsw.gov.au Page 2 of 2

Appendix B - Notification tracking maps


Dulwich Hill distribution

Marrickville distribution

Sydenham distribution


Appendix C - Temporary Transport Plan project web page

email at TTPComms@transport.nsw.gov.au or telephone 1800 171 386

community well in advance to give people plenty of time to plan ahead.

Final transport plans to keep customers moving during the upgrade will be shared with the

Community notifications and links for further information were placed online at www.mysydney.nsw.gov.au/SydenhamtoBankstown

